THREE-DIMENSIONAL VIBRATIONS OF THICK CIRCULAR AND ANNULAR PLATES

J. So
Korea Airport Construction Authority, 2172-1, Woonseo-Dong, Joong-Ku, Incheon, Korea 400-340
AND
A. W. Leissa
Applied Mechanics Program, The Ohio State University, Columbus, OH 43210, U.S.A.

(Received 9 January 1997, and in final form 16 July 1997)

The Ritz method is applied in a three-dimensional (3-D) analysis to obtain accurate frequencies for thick circular and annular plates. The method is formulated in a manner which allows one to have any combination of free or fixed plate boundaries. Admissible functions for the three displacement components are chosen as trigonometric functions in the circumferential co-ordinate, and algebraic polynomials in the radial and axial co-ordinates. Upper bound convergence of the non-dimensional frequencies to at least four significant figures is demonstrated. Comparisons of results are made with ones obtained by others using 2-D Mindlin thick plate theory, and with other 3-D solutions. Extensive and accurate (four significant figure) frequencies are presented for completely free circular plates having thickness-to-diameter ratios of $0 \cdot 2,0 \cdot 3,0 \cdot 4$ and $0 \cdot 5$ for Poisson's ratios $v=0$, 0.3 and 0.499 . Frequencies are also given for thick annular plates having a thickness-to-outer-diameter of $0 \cdot 2$, inside-to-outside-diameter ratios of $0 \cdot 1,0 \cdot 5$ and $0 \cdot 9$, and $v=0 \cdot 3$. All 3-D modes are included in the analyses; e.g., flexural thickness-shear, inplane stretching, and torsional. The circular and annular plate frequency data given is exact to at least four digits, thus being benchmark data against which results from 2-D thick plate theories or other approximate methods (e.g., finite elements) may be compared.
© 1998 Academic Press Limited

1. INTRODUCTION

Vibrating plates have tremendous practical importance in the world. Recognizing this importance, more than 2000 papers have been published on the subject of free, undampled vibrations alone, determining natural frequencies. At least 90 per cent of the published results are theoretical, based upon two-dimensional plate theories, either classical thin-plate theory, or theories which consider shear deformation and rotary inertia effects and are thought to be reasonably accurate for thick plates and/or higher frequency modes. However, the accuracies of these can only be assessed when results from them are compared with truly accurate results obtained from three-dimensional (3-D) analysis, where no artificial, kinematic constraints are placed upon the displacements. The present work provides such accurate, 3-D results for two important classes of problems, circular and annular plates, for the only types of edge conditions which can be exactly duplicated in reality-completely free.

In recent papers by the present authors [1-3], a 3-D method of analysis was presented for the free vibrations of solid and hollow cylinders of elastic and isotropic material. The
analysis was based upon the Ritz method using two co-ordinate systems: (1) cylindrical co-ordinates (r, θ, z); and (2) local co-ordinates where θ and z in cylindrical co-ordinates remain the same, but r is measured from the middle of the cylindrical wall. Also, as a general case, 3-D vibrations of truncated hollow cones were investigated $[4,5]$.

Other 3-D free vibrations of finite circular and hollow cylinders were studied by many researchers. Among them, some investigated the free vibrations of thick circular and annular plates using their own methods [6-9]. Some of their solutions were also compared with those of Mindlin's plate theory [10].

The primary objective of the present work is to present truly accurate values of the free-vibration frequencies of thick circular and annular plates, which are complementary to references [1-3]. In reference [2] accurate frequencies were given for completely free, solid circular cylinders, as well as for ones having one end fixed. For the completely free case, frequencies obtained were exact to four significant figures. However, none of the cylinders may be regarded as plates, for their length-todiameter (L / D) ratios were $1,1 \cdot 5,2,3$ and 5 . The accuracy of 1-D theories for vibrating rods and beams $(L / D=3,5,10,20,40)$ was the theme of reference [1]. No comparisons were made for plate-like cylinders. Reference [3] considered hollow circular cylinders. In the present work accurate frequencies are given for plate-like cylinders $(L / D=0 \cdot 5$ and less). Besides presenting the method of analysis and establishing its accuracy by means of convergence studies, comparisons are made with the other most accurate 3-D results known to date. The accurate 3-D results presented here serve as benchmarks against which other approximate methods (e.g., finite element, finite difference methods) and 2-D plate theories, first order and higher order, may be tested.

Figure 1. (a) Annular plate with local co-ordinate system (q, θ, z). (b) Circular plate with cylindrical co-ordinate system (r, θ, z).

Table 1
Convergence frequencies in $\omega R \sqrt{(\rho / G)}$ for the five lowest axisymmetric $(n=0)$ and ζ-symmetric modes, where $H / D=0.2$ and $v=0.3$

I	J	D	1	2	3	4	5
1	1	8	3.44267	10.22177	14.35485	15.94322	20.58867
3	1	16	3.43639	8.62444	11.86034	12.35021	14.37381
5	1	24	$3 \cdot 43639$	8.59221	11.56885	$12 \cdot 05093$	14.26232
7	1	32	3.43639	8.59200	11.55634	12.04391	13.52930
9	1	40	$3 \cdot 43639$	8.59199	11.55615	12.04274	13.47270
10	1	44	$3 \cdot 43639$	8.59199	11.55615	$12 \cdot 04251$	13.47146
1	2	12	3.44267	$10 \cdot 19499$	13.85522	15.61110	17.59332
3	2	24	$3 \cdot 43638$	$8 \cdot 62002$	11.54181	12.12318	13.91331
5	2	36	$3 \cdot 43638$	8.58884	11.49409	11.62695	13.88971
7	2	48	$3 \cdot 43638$	8.58868	11.49025	11.61245	13.42799
9	2	60	$3 \cdot 43638$	8.58868	11.48998	11.61220	13.38522
10	2	66	$3 \cdot 43638$	8.58868	11.48995	11.61217	13.38439
1	3	16	3.44267	$10 \cdot 19489$	13.84592	15.60478	17.53649
3	3	32	3.43638	8.61992	11.53807	12.12207	13.90757
5	3	48	$3 \cdot 43638$	8.58884	11.49182	11.62459	13.88422
7	3	64	$3 \cdot 43638$	8.58867	11.48816	11.61002	13.42651
9	3	80	$3 \cdot 43638$	8.58867	$\mathbf{1 1 . 4 8 7 9 1}$	11.60977	13.38422
1	4	20	3.44267	$10 \cdot 19489$	13.84589	15.60476	17.53607
3	4	40	$3 \cdot 43638$	$8 \cdot 61992$	11.53806	12.12207	13.90755
5	4	60	$3 \cdot 43638$	8.58884	11.49179	11.62456	13.88417
7	4	80	$3 \cdot 43638$	8.58867	11.48815	11.61001	13.42635
1	5	24	3.44267	10•19489	13.84589	15.60476	17.53607
3	5	48	$3 \cdot 43638$	$8 \cdot 61992$	11.53806	12.12207	13.90755
5	5	72	$3 \cdot 43638$	8.58884	11.49179	11.62455	13.88417
7	5	96	$3 \cdot 43638$	8.58867	11.48815	11.61001	13.42632
1	6	28	3.44267	$10 \cdot 19489$	13.84589	15.60476	17.53607
3	6	56	$3 \cdot 43638$	8.61992	11.53806	12.12207	13.90755
5	6	84	$3 \cdot 43638$	8.58884	11.49179	11.62455	13.88417
6	6	98	$3 \cdot 43638$	8.58867	11.49077	11.61356	13.45765

2. ANALYSIS

A representative annular plate of inner diameter $D_{i}\left(=2 R_{i}\right)$ and outer diameter D_{o} $\left(=2 R_{o}\right)$ and thickness H is shown in Figure 1. In the case of a solid circular plate, the inner diameter vanishes, and thus the diameter $D(=2 R)$ and the thickness H are the only two geometric parameters.

Cylindrical co-ordinates (r, θ, z), also shown in the figure, are used in the analysis. Location of the co-ordinate origin in the z-direction is chosen at the center of the plate. For convenience, the r and z co-ordinates are made dimensionless as follows:

$$
\begin{equation*}
\xi=\frac{r}{R_{o}}, \quad \zeta=\frac{z}{H} \tag{1}
\end{equation*}
$$

where R_{o} is the outer radius of the annular plate (R is used for the solid plate).

Displacement components in the ξ, θ and ζ directions are u, v and w. For the free, undamped vibration, their time response is sinusoidal and, moreover, the circular symmetry of the plate allows the displacement to be expressed by

$$
\begin{align*}
& u(\xi, \theta, \zeta, t)=U(\xi, \zeta) \cos n \theta \sin (\omega t+\phi) \\
& v(\xi, \theta, \zeta, t)=V(\xi, \zeta) \sin n \theta \sin (\omega t+\phi) \\
& w(\xi, \theta, \zeta, t)=W(\xi, \zeta) \cos n \theta \sin (\omega t+\phi) \tag{2}
\end{align*}
$$

where ω is a natural frequency, ϕ is an arbitrary phase angle determined by the initial conditions, and $n=0,1,2, \ldots, \infty$. By substituting equations (2) into the three partial differential equations of motion for the body, expressed in cylindrical co-ordinates, one may verify that these are proper assumed forms for the displacements, and that θ and t are thereby uncoupled from ξ and ζ.

Table 2
Convergence of frequencies in $\omega R \sqrt{(\rho / G)}$ for the five lowest ζ-antisymmetric modes with $n=1$, where $H / D=0.2$ and $v=0.3$

I	J	D	1	2	3	4	5
1	1	12	3.17854	8-21752	$8 \cdot 49207$	11.20912	28.32614
3	1	24	2.79903	$6 \cdot 30186$	8.17139	8.37331	$9 \cdot 92055$
5	1	36	2.78186	$5 \cdot 87503$	8.06383	$8 \cdot 30631$	$9 \cdot 31771$
7	1	48	2.78178	$5 \cdot 86208$	8.05648	$8 \cdot 30325$	$9 \cdot 21586$
9	1	60	2.78177	$5 \cdot 86200$	8.05623	$8 \cdot 30318$	$9 \cdot 21243$
10	1	66	2.78177	$5 \cdot 86200$	8.05623	$8 \cdot 30318$	$9 \cdot 21238$
1	2	18	3.17654	8.21199	$8 \cdot 48836$	11.15477	17.41577
3	2	36	2.79617	$6 \cdot 28169$	8.15761	$8 \cdot 36294$	$9 \cdot 86546$
5	2	54	2.77967	$5 \cdot 85660$	8.04636	$8 \cdot 29985$	$9 \cdot 27091$
7	2	72	2.77961	$5 \cdot 84440$	8.03788	$8 \cdot 29662$	9.17229
9	2	90	2.77961	$5 \cdot 84432$	8.03772	$8 \cdot 29655$	9•16873
1	3	24	3.17654	8.21199	$8 \cdot 48836$	$11 \cdot 15456$	16.95908
3	3	48	2.79613	$6 \cdot 27917$	$8 \cdot 15719$	$8 \cdot 36253$	$9 \cdot 86451$
5	3	72	2.77967	$5 \cdot 85651$	8.04620	$8 \cdot 29980$	$9 \cdot 27008$
7	3	96	2.77961	$5 \cdot 84436$	8.03778	$8 \cdot 29659$	9.17212
9	3	120	$\mathbf{2 . 7 7 9 6 0}$	$\mathbf{5 . 8 4 4 2 8}$	8.03762	$8 \cdot 29652$	9-16856
1	4	30	3.17654	8.21199	$8 \cdot 48836$	$11 \cdot 15456$	16.95127
3	4	60	2.79614	$6 \cdot 27971$	$8 \cdot 15726$	8.36259	9.86460
5	4	90	2.77967	$5 \cdot 85621$	8.04612	$8 \cdot 29979$	$9 \cdot 26966$
7	4	120	2.77961	$5 \cdot 84436$	8.03778	$8 \cdot 29659$	$9 \cdot 17212$
8	4	135	2.77960	$5 \cdot 84429$	8.03772	$8 \cdot 29655$	9.16903
1	5	36	3.17654	8.21199	8.48836	11.15456	16.95123
3	5	72	2.79613	6.27914	$8 \cdot 15718$	$8 \cdot 36252$	9.86450
5	5	108	2.77967	$5 \cdot 85650$	8.04620	$8 \cdot 29980$	$9 \cdot 27003$
7	5	144	2.77961	5•84436	8.03778	$8 \cdot 29659$	$9 \cdot 17212$
1	6	42	$3 \cdot 17654$	8.21199	$8 \cdot 48836$	$11 \cdot 15456$	16.95123
3	6	84	2.79616	$6 \cdot 28170$	$8 \cdot 15748$	$8 \cdot 36278$	9.86484
5	6	126	2.77967	5.85651	8.04620	$8 \cdot 29980$	$9 \cdot 27004$
6	6	147	2.77962	$5 \cdot 84493$	8.04512	$8 \cdot 29887$	$9 \cdot 19670$

Table 3
Comparison of non-dimensional frequencies $\omega R \sqrt{(\rho / G)}$ for antisymmetric modes with various ratios of thickness-to-diameter, from 3-D and 2-D Mindlin theory

Table 3-(continued overleaf)

TABLE 3-(continued)

n	s			H / D						
				$0 \cdot 05$		$0 \cdot 075$		$0 \cdot 1$		$0 \cdot 125$
4	1	3-D	5	1.016	5	1.458	5	1.843	5	2.172
		2-D	5	1.015	5	1.454	5	1.863	5	2.162
		(\%)		$(-0 \cdot 1)$		(-0.2)		(-0.3)		(-0.5)
	2	3-D		3•181		4.283		5.088		5.669
		2-D		$3 \cdot 166$		$4 \cdot 248$		5.030		5.589
		(\%)		(-0.4)		$(-0 \cdot 8)$		$(-1 \cdot 1)$		(-1.4)
	3	3-D		5.702		7.298		8.318		8.950
		2-D		5.658		$7 \cdot 206$		$8 \cdot 178$		8.773
		(\%)		(-0.8)		(-1.3)		(-1.7)		(-2.0)
	4	3-D		8.513		10.448		11.524		11.963
		2-D		8.415		10.266		11.278		11.767
		(\%)		(-1.2)		(-1.8)		$(-2 \cdot 1)$		(-1.6)
5	1	3-D	6	1.529	6	$2 \cdot 154$	6	2.673	6	3.096
		2-D	6	1.526	6	2.147	6	$2 \cdot 660$	6	3.077
		(\%)		(-0.2)		(-0.3)		(-0.5)		(-0.6)
	2	3-D		4.059		$5 \cdot 355$		$6 \cdot 255$		6.875
		2-D		4.036		5.304		$6 \cdot 173$		6.765
		(\%)		(-0.6)		(-1.0)		(-1.3)		(-1.6)
	3	3-D		6.793		8.536		9.595		$10 \cdot 200$
		2-D		6.731		8.414		9.419		9.986
		(\%)		(-0.9)		(-1.4)		(-1.8)		$(-2 \cdot 1)$
	4	3-D		9.743		11.776		12.823		13.062
		2-D		9.615		11.547		12.533		$12 \cdot 562$
		(\%)		$(-1 \cdot 3)$		(-1.9)		$(-2 \cdot 3)$		$(-3 \cdot 8)$
6	1	3-D	9	$2 \cdot 116$	9	2.929	9	$3 \cdot 570$	9	4.072
		2-D	9	$2 \cdot 111$	9	2.915	9	3.547	9	4.039
		(\%)		(-0.3)		(-0.5)		(-0.6)		(-0.8)
	2	3-D		4.985		6.454		7.427		8.069
		2-D		4.952		6.382		7.317		7.927
		(\%)		(-0.7)		$(-1 \cdot 1)$		(-1.5)		(-1.8)
	3	3-D		7.907		9.773		$10 \cdot 850$		11.403
		2-D		7.825		9.619		$10 \cdot 636$		
		(\%)		(-1.0)		(-1.6)		(-2.0)		$(-2 \cdot 2)$
	4	3-D		10.985		13.081		14.069		14.049
		2-D		$10 \cdot 819$		12.810		13.741		13.780
		(\%)		(-1.5)		$(-2 \cdot 1)$		$(-2 \cdot 3)$		(-1.9)

A complementary set of functions may also be used for equations (2), replacing $\cos n \theta$ by $\sin n \theta$, and conversely. This gives the same vibratory mode shapes rotated by 90° in θ, and the same frequencies, except for $n=0$. For $n=0$, equations (2) yield the axisymmetric modes which involve only u and w (for example, longitudinal and/or radial extension). However, the complementary set for $n=0$ yields the torsional modes, which involve only v, uncoupled from u and w. Thus, for the circular or annular cross-section (but not for other cross-sections), there is no warping of the cross-section during torsional vibration.

Using algebraic polynomials which are mathematically complete, displacement functions U, V and W in equations (2) which are capable of satisfying any geometrical

Table 4
Comparison of frequencies $\omega R_{o} \sqrt{(\rho / G)}$ for the annular thick plates with $v=0.3$ by the 3-D Ritz (3DR), 3-D Hutchinson's series method (3DH), and Mindlin's 2-D plate theory (2DM)

boundary conditions may be represented by

$$
\begin{align*}
& U(\xi, \zeta)=f_{1}(\xi) \sum_{i=0}^{I} \sum_{j=0}^{J} A_{i j} \xi^{i \zeta^{j}} \\
& V(\xi, \zeta)=f_{2}(\xi) \sum_{k=0}^{K} \sum_{\ell=0}^{L} B_{k \iota} \xi^{k \zeta^{\ell}} \\
& W(\xi, \zeta)=f_{3}(\xi) \sum_{m=0}^{M} \sum_{p=0}^{P} C_{m n} \xi^{m \zeta^{p}} \tag{3}
\end{align*}
$$

Table 5
Convergence of frequency $\omega R \sqrt{(\rho / G)}$ for the lowest antisymmetric mode of a circular plate with $v=0.344$ and $H / D=0.25$ based upon Hutchinson's series solution technique $(n=1)$

$N R$	$N Z$			
	1	2	3	4
2	3.331	$3 \cdot 322$	$3 \cdot 321$	$3 \cdot 321$
4	$3 \cdot 223$	3.201	3.198	3.198
6	$3 \cdot 206$	3.175	3.171	3.171
8	$3 \cdot 202$	3.167	3.162	3.161
10	$3 \cdot 200$	3.164	$3 \cdot 158$	$3 \cdot 156$
12	$3 \cdot 200$	3.163	$3 \cdot 156$	3.154

where f_{i} are all unity if no displacement constraints are imposed on any boundaries. If the outer edge is fixed and all other boundaries free,

$$
\begin{equation*}
f_{1}=f_{2}=f_{3}=1-\xi \tag{4}
\end{equation*}
$$

If, as another example, both edges are fixed, then

$$
\begin{equation*}
f_{1}=f_{2}=f_{3}=(1-\xi)\left(\frac{R_{i}}{R_{o}}-\xi\right) \tag{5}
\end{equation*}
$$

An additional plane of symmetry at $\zeta=0$ exists for plates having both faces free. In such cases, one should take advantage of the symmetry by taking j and ℓ to be $0,2,4, \ldots$ and $p=1,3,5, \ldots$ for the symmetric modes, and j and ℓ to be $1,3,5, \ldots$ and $p=0,2,4, \ldots$ for the antisymmetric modes. For plate-like cylinders (for example, $H / D=0 \cdot 5$ and less) the antisymmetric modes include the ones which are predominantly flexural, whereas the symmetric modes include those which are predominantly inplane stretching.

For the analysis of a circular plate with D and H only, considerable care must be exercised in choosing the lower limits of i, j, k, ℓ, m and p in equations (3). This is due to the necessity to avoid strain and stress singularities at $\xi=0$. To circumvent this singularity, one must take: (1) For the axisymmetric modes $(n=0), i=1,2,3, \ldots, \infty$ and

Table 6
Convergence of frequency $\omega R \sqrt{(\rho / G)}$ for the same plate as in Table 5, based upon the Ritz method

I	$\overbrace{1}$	2	3	4	
1	$3 \cdot 5526$	$3 \cdot 5446$	$3 \cdot 5430$	$3 \cdot 5430$	
3	$3 \cdot 1668$	$3 \cdot 1601$	$3 \cdot 1600$	$3 \cdot 1600$	
5	$3 \cdot 1511$	$3 \cdot 1458$	$3 \cdot 1458$	$1 \cdot 1458$	
7	$3 \cdot 1510$	$\mathbf{3} \cdot \mathbf{1 4 5 7}$	$3 \cdot 1457$	$3 \cdot 1457$	
9	$3 \cdot 1510$	$3 \cdot 1457$	$3 \cdot 1457$	-	

TABLE 7
Comparison of frequencies in $\omega R_{o} \sqrt{(\rho / G)}$ for the annular plate with $H / D_{o}=0 \cdot 2941$, $D_{i} / D_{o}=0 \cdot 1765$, and $v=0.3$ by the Ritz (3DR) method and the finite element method (3DF)

		s				
n	Method	1	2	3	4	5
For symmetric modes						
0	3DR	$3 \cdot 0858$	$7 \cdot 2372$	$7 \cdot 8200$	8.9145	$9 \cdot 5772$
	3DF	3.0874	7.2457	$7 \cdot 8345$	8.9372	$9 \cdot 7051$
	(\%)	(0.05)	(0.12)	(0.18)	(0.26)	(1.39)
1	3DR	2.7717	6.0272	6.9938	7.8951	
	3DF	2.7778	6.0287	6.9986	7.9149	
	(\%)	(0.22)	(0.03)	(0.07)	(0.25)	
2	3DR	1.9684	$4 \cdot 0503$	$6 \cdot 3799$	7.7821	8•1282
	3DF	1.9776	4.0535	$6 \cdot 3915$	$7 \cdot 8033$	8.1379
	(\%)	(0.47)	(0.08)	(0.18)	(0.27)	(0.12)
For antisymmetric modes						
	3DR	1.7884	$5 \cdot 3168$	6.7194	$9 \cdot 6715$	
0	3DF	1.7899	$5 \cdot 3276$	6.7422	$9 \cdot 7096$	
	(\%)	(0.09)	(0.20)	(0.34)	(0.39)	
1	3DR	$2 \cdot 9046$	$5 \cdot 5678$	$6 \cdot 0365$	$6 \cdot 1431$	
	3DF	$2 \cdot 9090$	$5 \cdot 5755$	6.0416	6.1547	
	(\%)	(0.15)	(0.14)	(0.08)	(0.19)	
2	3DR	$1 \cdot 1300$	$4 \cdot 4052$	$6 \cdot 1753$	6.7662	7.6741
	3DF	$1 \cdot 1324$	$4 \cdot 4100$	$6 \cdot 1907$	6.7725	7.7279
	(\%)	(0.21)	(0.11)	(0.25)	(0.09)	(0.70)

$m=0,1,2, \ldots, \infty$. (2) For the torsional modes $(n=0), k=1,2,3, \ldots, \infty$. (3) For one other special case $(n=1), i, k, m=1,2,3, \ldots, \infty$ and terms $A_{00}+A_{01} \zeta$ and $B_{00}+B_{01} \zeta$ added to U and V, respectively. These are rigid body translation and rotation terms that are needed for the completeness of the admissible functions. (4) For general modes ($n \geqslant 2$), $i, k, m=1,2,3, \ldots, \infty$.

The Ritz method uses the energy functionals for the vibrating system. The maximum potential energy during a vibratory cycle is due to the strain energy of deformation. It is

$$
\begin{align*}
V_{\max }= & \frac{G}{2} H \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{A}^{1}\left\{\frac{2 v}{1-2 v}\left(U,_{\xi}+\frac{n}{\xi} V+\frac{U}{\xi}+\frac{R_{0}}{H} W_{, \zeta}\right)^{2} \Gamma_{1}\right. \\
& +2\left[(U, \xi)^{2}+\left(\frac{n}{\xi} V+\frac{U}{\xi}\right)^{2}+\left(\frac{R_{o}}{H} W_{, \zeta}\right)^{2}\right] \Gamma_{1} \\
& +\left[\left(V, \xi-\frac{n}{\xi} U-\frac{V}{\xi}\right)^{2}+\left(\frac{R_{o}}{H} V, \frac{n}{\xi} W\right)^{2}\right] \Gamma_{2} \\
& \left.+\left(\frac{R_{0}}{H} U_{, \zeta}+W,\right)^{2} \Gamma_{1}\right\} \xi \mathrm{d} \xi \mathrm{~d} \zeta \tag{6}
\end{align*}
$$

where G is the shear modulus of elasticity, v is Poisson's ratio, subscripted symbols following commas denote differentiations, and the lower limit of integration A on ξ is R_{i} / R_{0}. For the circular plate, A becomes zero. In addition, Γ_{1} and Γ_{2} in equation (6) are defined by

$$
\begin{align*}
& \Gamma_{1}=\int_{0}^{2 \pi} \cos ^{2} n \theta \mathrm{~d} \theta= \begin{cases}2 \pi, & \text { if } n=0 \\
\pi, & \text { if } n>0\end{cases} \\
& \Gamma_{2}=\int_{0}^{2 \pi} \sin ^{2} n \theta \mathrm{~d} \theta=\left\{\begin{array}{ll}
0, & \text { if } n=0 \\
\pi, & \text { if } n>0
\end{array} .\right. \tag{7}
\end{align*}
$$

The maximum kinetic energy during a vibratory cycle is

$$
\begin{equation*}
T_{\max }=\frac{\rho}{2} \omega^{2} R_{0}^{2} H \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{A}^{1}\left(U^{2} \Gamma_{1}+V^{2} \Gamma_{2}+W^{2} \Gamma_{1}\right) \xi \mathrm{d} \xi \mathrm{~d} \zeta \tag{8}
\end{equation*}
$$

where ρ is mass per unit volume.
Free vibration frequencies are obtained by applying the minimizing conditions

$$
\begin{align*}
& \frac{\partial}{\partial A_{i j}}\left(V_{\max }-T_{\max }\right)=0 \\
& \frac{\partial}{\partial B_{k \prime}}\left(V_{\max }-T_{\max }\right)=0 \\
& \frac{\partial}{\partial C_{m p}}\left(V_{\max }-T_{\max }\right)=0 \tag{9}
\end{align*}
$$

for all values of i, j, k, ℓ, m and p used in equations (3). This results in a generalized eigenvalue problem in the form of $\mathbf{K x}=\lambda \mathbf{M x}$, where \mathbf{K} and \mathbf{M} are stiffness and mass matrices, \mathbf{x} is an eigenvector consisting of unknowns $A_{i j}, B_{k t}, C_{m p}$ and λ is an eigenvalue expressed by the square of non-dimensional frequency or $\omega^{2} R_{o}^{2} \rho / G$. For a non-trivial solution the determinant of $(\mathbf{K}-\lambda \mathbf{M})$ is set equal to zero. From the zeros (eigenvalues) of this determinant, the non-dimensional frequency parameters are obtained. Corresponding mode shapes (eigenvectors) are determined by back-substitution of the eigenvalues, one-by-one, in the usual manner.

For hollow cylinders (i.e., annular plates), a local co-ordinate system is used, where θ and z are the same but a radial direction q measured from the middle of the cylindrical wall is introduced to the analysis (Figure 1). This local coordinate system has a great advantage in reducing early numerical instability or ill-conditioning [3]. In other words, relatively accurate frequencies can be obtained in comparison with those based upon cylindrical co-ordinates. The analysis based upon local co-ordinates (q, θ, z) follows the same procedure described above, but with different forms of energy functionals obtained

Table 8
3-D frequencies in $\omega R \sqrt{(\rho / G)}$ for symmetric modes of the circular plates with $v=0 \cdot 3$, based upon the Ritz method

n	s	H/D			
		$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$
0^{a}	1	3.436	$3 \cdot 398$	$3 \cdot 336$	3.238
	2	8.589	$7 \cdot 468$	$5 \cdot 740$	4.643
	3	11.488	7.689	$6 \cdot 398$	$5 \cdot 617$
	4	11.610	$9 \cdot 245$	$7 \cdot 397$	$6 \cdot 381$
	5	13.383	9.910	8.761	8.005
0^{t}	1	$5 \cdot 136$	5.136	$5 \cdot 136$	5.136
	2	$8 \cdot 417$	8.417	$7 \cdot 854$	$6 \cdot 283$
	3	11.620	10.472	$8 \cdot 417$	$8 \cdot 115$
	4	14.796	11.620	9.384	$8 \cdot 417$
	5	$15 \cdot 708$	11.663	11.512	$10 \cdot 504$
1	1	2.731	2.726	2.718	$2 \cdot 705$
	2	5.864	5.665	5.233	4.595
	3	$6 \cdot 812$	6.749	5.853	$4 \cdot 836$
	4	9.903	7.737	6.700	6.439
	5	10.366	8.414	7.343	$6 \cdot 639$
2	1	$2 \cdot 345$	$2 \cdot 345$	$2 \cdot 345$	$2 \cdot 345$
	2	$4 \cdot 230$	$4 \cdot 204$	$4 \cdot 143$	3.966
	3	7.501	7.003	5.834	$4 \cdot 867$
	4	8.560	7.733	$6 \cdot 263$	$5 \cdot 623$
	5	11.122	8.292	7.935	$7 \cdot 353$
3	1	3.600	$3 \cdot 599$	3.596	$3 \cdot 591$
	2	5.793	5.693	$5 \cdot 303$	$4 \cdot 612$
	3	8.832	$7 \cdot 712$	$6 \cdot 392$	6.045
	4	$10 \cdot 105$	8.165	$7 \cdot 058$	$6 \cdot 498$
	5	11.610	9.427	8.972	$8 \cdot 123$
4	1	4.685	4.679	4.667	4.640
	2	7.349	6.961	5.931	5.230
	3	9.993	$8 \cdot 281$	7.653	$7 \cdot 238$
	4	11.262	8.871	7.939	7.681
	5	11.930	10.653	9.741	8.975
5	1	5.700	$5 \cdot 685$	$5 \cdot 651$	5.571
	2	8.834	$7 \cdot 726$	6.549	6.034
	3	10.932	$9 \cdot 376$	$8 \cdot 685$	8.108
	4	11.987	9.664	$9 \cdot 243$	$9 \cdot 177$
	5	12.618	11.743	$10 \cdot 548$	9.886
6	1	6.679	$6 \cdot 649$	6.577	$6 \cdot 451$
	2	$10 \cdot 166$	$8 \cdot 308$	$7 \cdot 288$	6.950
	3	11.674	10.433	9.549	8.948
	4	12.571	10.799	10.701	10.614
	5	13.687	12.560	11.408	10.850

Table 8-(continued overleaf)

Table 8 (continued)

n	s	H / D			
		$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	0.5
7	1	7.636	7.583	$7 \cdot 468$	7.335
	2	11.173	8.937	$8 \cdot 126$	7.902
	3	12.538	11.285	10.398	9.787
	4	13.229	$12 \cdot 179$	12.097	11.679
	5	14.907	13.365	12.329	12.084
8	1	8.577	8.495	8.349	8.233
	2	11.846	9.645	9.022	8.860
	3	13.673	$12 \cdot 139$	11.242	10.631
	4	13.942	$13 \cdot 528$	$13 \cdot 187$	$12 \cdot 560$
	5	$16 \cdot 129$	14•189	13.526	13.184
9	1	9.507	9.391	$9 \cdot 234$	$9 \cdot 142$
	2	12.418	$10 \cdot 425$	9.945	9.818
	3	14.697	12.995	12.087	$11 \cdot 483$
	4	14.906	14.820	$14 \cdot 133$	$13 \cdot 392$
	5	17.052	$15 \cdot 052$	14.822	14.107

Note: $0^{a}=$ axisymmetric, $0^{t}=$ torsional.
same procedure described above, but with different forms of energy functionals obtained by a transformation of co-ordinates. Equations (6) and (8) are rewritten as

$$
\begin{align*}
V_{\max }= & \frac{G}{2} H \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left\{\frac{2 v}{1-2 v}\left(U, \xi+\frac{n}{\gamma} V+\frac{U}{\gamma}+\frac{R_{o}-R_{i}}{H} W_{, \zeta}\right)^{2} \Gamma_{1}\right. \\
& +2\left[\left(U_{, \xi}\right)^{2}+\left(\frac{n}{\gamma} V+\frac{U}{\gamma}\right)^{2}+\left(\frac{R_{o}-R_{i}}{H} W_{, \zeta}\right)^{2}\right]_{1} \\
& +\left[\left(V_{, \xi}-\frac{n}{\gamma} U-\frac{V}{\gamma}\right)^{2}+\left(\frac{R_{o}-R_{i}}{H} V_{, \zeta}-\frac{n}{\gamma} W\right)^{2}\right] \Gamma_{2} \\
& \left.+\left(\frac{R_{o}-R_{i}}{H} U, \zeta+W_{, \xi}\right)^{2} \Gamma_{1}\right\} \gamma \mathrm{d} \xi \mathrm{~d} \zeta \tag{10}\\
T_{\max } & =\frac{\rho}{2} \omega^{2}\left(R_{o}-R_{i}\right)^{2} H \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(U^{2} \Gamma_{1}+V^{2} \Gamma_{2}+W^{2} \Gamma_{1}\right) \gamma \mathrm{d} \xi \mathrm{~d} \zeta \tag{11}
\end{align*}
$$

where ξ is redefined by $q /\left(R_{o}-R_{i}\right)$ and $\gamma=\xi+\left[\left(R_{o}+R_{i}\right) /\left(R_{o}-R_{i}\right)\right] / 2$.
As it is well known, frequencies by the Ritz method converged in the manner of upper bounds to the exact values. These upper bounds are improved by increasing the numbers of polynomial terms in equaions (3). Since the algebraic polynomials of equations (3) form sets which are mathematically complete, as sufficient numbers of terms are taken, monotonic convergence to the exact frequencies is guaranteed.

Table 9
3-D frequencies in $\omega R \sqrt{(\rho / G)}$ for antisymmetric modes of the circular plates with $v=0 \cdot 3$, based upon the Ritz method

n	s	$\overbrace{}^{H / D}$			
		$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$
0^{a}	1	$1 \cdot 464$	$1 \cdot 896$	$2 \cdot 193$	$2 \cdot 402$
	2	$4 \cdot 415$	$4 \cdot 889$	$4 \cdot 890$	4.677
	3	$7 \cdot 353$	6.847	$6 \cdot 359$	$6 \cdot 145$
	4	$9 \cdot 323$	8.755	8.700	8.079
	5	11.088	$10 \cdot 182$	9.066	$8 \cdot 221$
0^{t}	1	$7 \cdot 854$	5.236	3.927	$3 \cdot 142$
	2	9.384	7.334	$6 \cdot 465$	6.020
	3	11.512	9.913	$9 \cdot 288$	8.984
	4	14.025	12.745	11.781	$9 \cdot 425$
	5	16.751	15.695	12.265	10.733
1	1	2.780	3.249	$3 \cdot 314$	3.088
	2	$5 \cdot 844$	$5 \cdot 439$	$4 \cdot 578$	4.053
	3	8.038	5.867	$4 \cdot 892$	4.595
	4	$8 \cdot 297$	$6 \cdot 873$	6.707	$6 \cdot 386$
	5	9.169	$8 \cdot 220$	7.641	$7 \cdot 278$
2	1	$0 \cdot 9078$	1.211	1.430	1.591
	2	4.089	$4 \cdot 475$	4.330	4.040
	3	7.087	$6 \cdot 348$	5.784	5.243
	4	8.881	6.773	5.936	$5 \cdot 850$
	5	8.984	8.351	$8 \cdot 160$	7.665
3	1	1.860	$2 \cdot 322$	2.613	2.805
	2	$5 \cdot 353$	5.572	$5 \cdot 270$	4.962
	3	$8 \cdot 155$	$7 \cdot 299$	6.969	$6 \cdot 477$
	4	9.723	7.918	$7 \cdot 128$	6.994
	5	10.069	9.714	9.368	8.632
4	1	$2 \cdot 890$	3.442	3.755	3.945
	2	6.561	6.564	$6 \cdot 172$	5.870
	3	9.092	8.318	$8 \cdot 166$	7.593
	4	10.715	9.140	$8 \cdot 286$	8.062
	5	11.265	10.976	10.368	$9 \cdot 411$
5	1	3.951	4.546	4.855	5.030
	2	$7 \cdot 709$	$7 \cdot 492$	7.067	6.779
	3	9.980	9.391	$9 \cdot 295$	$8 \cdot 460$
	4	11.814	10.361	$9 \cdot 383$	$9 \cdot 148$
	5	12.482	12.134	11.227	10.374
6	1	5.022	5.628	5.919	6.072
	2	8.795	8.393	7.965	7.692
	3	10.881	10.482	10.227	9.222
	4	12.961	11.542	10.489	10.183
	5	13.688	13.179	$12 \cdot 145$	11.397

Table 9-(continued overleaf)

Table 9-(continued)

n	s	H / D			
		$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$
7	1	6.090	6.688	6.954	7.082
	2	9.825	$9 \cdot 287$	8.870	8.609
	3	11.819	11.569	11.034	9.994
	4	$14 \cdot 125$	12.646	11.556	$11 \cdot 134$
	5	14.870	$14 \cdot 136$	$13 \cdot 129$	12.326
8	1	$7 \cdot 151$	$7 \cdot 727$	7.963	8.067
	2	10.805	$10 \cdot 181$	9.781	$9 \cdot 528$
	3	12.798	12.639	11.799	10.809
	4	15.287	13.640	12.576	12.027
	5	16.021	15.080	13.992	13.270
9	1	$8 \cdot 202$	8.747	8.953	9.035
	2	11.750	11.080	10.697	10.449
	3	13.810	13.679	12.571	11.666
	4	16.441	14.527	13.552	12.887
	5	17.139	16.077	14.871	$14 \cdot 222$

Note: $0^{a}=$ axisymmetric, $0^{t}=$ torsional.

3. CONVERGENCE STUDIES

To demonstrate the convergence of the method, numerical results are presented for a completely free, circular plate with $H / D=0.2$ and Poisson's ratio $v=0.3$. Equal numbers of polynomial terms were taken for U, V and W in equations (3) in either ξ-co-ordinate or ζ-co-ordinate (i.e., $I=K=M$ or $J=L=P$), although a computational optimization could be obtained for some configurations and some mode shapes by using unequal numbers of polynomial terms. For a typical circular plate, more polynomial terms in the ξ-co-ordinate are required than in ζ (i.e., $I>J$). Thus, the appropriate scheme for convergence study is to increase I from 1 until numerical ill-conditioning occurs, while keeping J at $1,2,3$, and so on.
The non-dimensional frequencies $(\omega R \sqrt{(\rho / G)})$ are listed in Table 1 for the first five modes which are both axisymmetic ($n=0$) and symmetric (in ζ). The first two columns show the upper limits of $I(=K=M)$ and $J(=L=P)$ used in equations (3). The third column indicates the size of the resulting eigenvalue determinant (D). As J increases, I decreases due to ill-conditioning. Bold-faced values in Table 1 indicate the lowest frequencies for the smallest determinant sizes from which they are obtained. First and second frequencies converged to six-digit accurate values of 3.43638 and 8.58867 with $(I, J)=(3,2)$ and $(7,3)$, respectively but the other frequencies are of three- or four-digit accuracy. The maximum size of determinant (D) is 98 .
Table 2 shows frequencies for the first five antisymmetric (in ζ) modes having $n=1$. Similar to Table 1, the lowest values are obtained from the data set with $J=3$. First and second frequencies converged to five-digit accurate values, while the remaining ones are of only three- or four-digit accuracy. The maximum size of determinant (D) achieved is, however, increased to 147, mainly because all three displacement components are involved for modes other than $n=0$.
All computations above were performed in double precision (16 significant figures). Higher precision (i.e., quadruple precision) computation would produce more accurate

Table 10
3-D frequencies in $\omega R \sqrt{(\rho / G)}$ for symmetric modes of the circular plates with $v=0$, based upon the Ritz method

		H / D			
n	s	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$
0^{a}	1	$2 \cdot 604$	$2 \cdot 604$	$2 \cdot 604$	$2 \cdot 604$
	2	7.540	6.502	4.835	$3 \cdot 871$
	3	9.810	$7 \cdot 405$	$5 \cdot 554$	$4 \cdot 443$
	4	$10 \cdot 874$	$7 \cdot 429$	$6 \cdot 102$	5.518
	5	$11 \cdot 107$	$7 \cdot 540$	$7 \cdot 540$	$7 \cdot 386$
0^{t}	1	$5 \cdot 136$	5.136	$5 \cdot 136$	$5 \cdot 136$
	2	8.417	8.417	7.854	$6 \cdot 283$
	3	11.620	10.472	8.417	$8 \cdot 115$
	4	14.796	11.620	$9 \cdot 384$	$8 \cdot 417$
	5	15.708	11.663	11.512	$10 \cdot 504$
1	1	$2 \cdot 474$	2.474	2.474	$2 \cdot 474$
	2	5.003	$5 \cdot 003$	4.986	4.017
	3	6.734	6.565	5.003	4.508
	4	9.590	6.734	$5 \cdot 458$	$5 \cdot 003$
	5	9.845	$7 \cdot 277$	6.734	6.328
2	1	2.336	2.336	2.336	2.336
	2	3.796	3.796	3.796	3.796
	3	$6 \cdot 783$	6.741	5.079	4.056
	4	8.301	6.783	5.819	5.164
	5	9.949	$7 \cdot 277$	6.783	6.783
3	1	3.545	3.545	3.545	3.545
	2	5.257	5.257	$5 \cdot 249$	$4 \cdot 366$
	3	8.298	6.883	$5 \cdot 257$	$5 \cdot 257$
	4	9.895	$7 \cdot 618$	$6 \cdot 490$	5.952
	5	$10 \cdot 120$	8.298	8.298	7.739
4	1	4.571	4.571	4.571	4.571
	2	6.775	6.775	$5 \cdot 618$	4.919
	3	9.666	7.074	6.775	6.757
	4	$10 \cdot 320$	8.201	$7 \cdot 261$	6.775
	5	10.918	$9 \cdot 666$	$9 \cdot 253$	8.481
5	1	5.529	5.529	5.529	5.529
	2	8.297	7.393	$6 \cdot 159$	5.631
	3	$10 \cdot 502$	8.297	8.064	$7 \cdot 550$
	4	10.956	8.901	8.297	$8 \cdot 297$
	5	11.219	10.956	9.991	$9 \cdot 272$
6	1	6.457	6.457	6.457	$6 \cdot 435$
	2	9.808	$7 \cdot 842$	6.827	$6 \cdot 457$
	3	10.704	$9 \cdot 665$	8.872	$8 \cdot 332$
	4	11.688	9.808	9.808	9.808
	5	12.201	11.848	10.761	10.094

Table 10-(continued overleaf)

Table 10-(continued)

n	s	H / D			
		$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$
7	1	7.369	7.369	7.369	7.294
	2	10.973	8.401	7.580	$7 \cdot 369$
	3	11.304	10.462	9.673	9.107
	4	12.265	11.304	11.304	$10 \cdot 932$
	5	13.423	$12 \cdot 611$	11.567	11.304
8	1	8.272	8.272	$8 \cdot 272$	8.181
	2	11.322	9.047	$8 \cdot 390$	8.272
	3	12.780	11.274	10.465	9.882
	4	12.917	12.780	$12 \cdot 402$	11.772
	5	14.635	13.379	12.780	12.780
9	1	9.169	$9 \cdot 169$	$9 \cdot 169$	$9 \cdot 086$
	2	11.750	9.760	$9 \cdot 237$	$9 \cdot 169$
	3	13.623	12.091	11.252	$10 \cdot 662$
	4	14.232	$14 \cdot 163$	$13 \cdot 258$	12.611
	5	$15 \cdot 846$	14.232	$14 \cdot 232$	13.811

Note: $0^{a}=$ axisymmetric, $0^{t}=$ torsional.
frequencies. There are some other ways to avoid the early ill-conditioning seen in the tables, such as using orthogonal polynomials.
Extensive convergence studies for the 3-D Ritz method have also been made in reference [5] for hollow cylinders (for which the annular, thick plate is a special case). Convergence rates were observed which are similar to those exhibited for solid plates in Tables 1 and 2.

4. COMPARISON WITH MINDLIN'S THEORY

The vibrations of thick plates have received much attention in a series of papers by Mindlin and his co-workers. Mindlin and Deresiewicz used Mindlin's plate theory to consider axisymmetric ($n=0$) vibration of circular plates in reference [11] and to consider the ($n=1$) mode in reference [12]. Irie et al. [13] obtained frequency data for circular plates with various boundary conditions, including a free edge. The thickness ratios taken in their paper are $0.025,0.05,0.075,0.1$ and 0.125 with a Poisson's ratio (v) of 0.3 .
Table 3 shows the comparison of dimensionless frequencies $(\omega R \sqrt{(\rho / G)})$ from the 3-D and Mindlin's theories for circular plates of $H / D=0.05,0 \cdot 075,0 \cdot 1$ and 0.125 . A total of 28 modes-seven circumferential wave numbers (i.e., $n=0,1,2, \ldots, 6$) and four radial mode numbers (i.e., $s=1,2,3,4$)-are selected for the frequency comparison. The bold-faced integers in front of frequency data indicate the ascending order of the ten lowest frequencies. In addition, the numbers in the parentheses are the percentage differences expressed by

$$
\begin{equation*}
\text { Difference }(\%)=\frac{(2-D \text { frequency })-(3-D \text { frequency })}{3-D \text { frequency }} . \tag{12}
\end{equation*}
$$

From the table, it is seen that the lowest ten frequencies arise in the order of $(n, s)=(2,1),(0,1),(3,1),(1,1),(4,1),(5,1),(2,2),(0,2),(6,1)$ and $(3,2)$, regardless of

Table 11
3-D frequencies in $\omega R \sqrt{(\rho / G)}$ for antisymmetric modes of the circular plates with $v=0$, based upon the Ritz method

		$\overbrace{}^{H / D}$			
n	s	0.2	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$
0^{a}	1	$1 \cdot 148$	1.503	1.749	1.922
	2	3.839	$4 \cdot 324$	4.403	$4 \cdot 283$
	3	$6 \cdot 664$	$6 \cdot 490$	6.020	$5 \cdot 698$
	4	8.896	$8 \cdot 129$	7.969	$7 \cdot 329$
	5	10.331	$9 \cdot 589$	8.534	7.989
0^{t}	1	$7 \cdot 854$	$5 \cdot 236$	3.927	$3 \cdot 142$
	2	$9 \cdot 384$	7.334	$6 \cdot 465$	6.020
	3	11.512	9.913	$9 \cdot 288$	8.984
	4	14.025	12.745	11.781	$9 \cdot 425$
	5	16.751	$15 \cdot 695$	12.265	10.733
1	1	$2 \cdot 355$	2.797	$2 \cdot 934$	$2 \cdot 854$
	2	$5 \cdot 206$	$5 \cdot 253$	$4 \cdot 443$	$3 \cdot 852$
	3	7.755	5.715	4.763	4.389
	4	8.172	6.450	$6 \cdot 176$	5.961
	5	8.716	$7 \cdot 836$	$7 \cdot 220$	6.629
2	1	$0 \cdot 8857$	1.189	1.411	1.575
	2	$3 \cdot 588$	$4 \cdot 003$	3.981	3.789
	3	6.447	$6 \cdot 108$	$5 \cdot 589$	5.030
	4	8.589	6.614	5.659	$5 \cdot 477$
	5	8.861	7.759	7.627	$7 \cdot 278$
3	1	1.801	$2 \cdot 272$	$2 \cdot 574$	2.776
	2	$4 \cdot 791$	$5 \cdot 085$	$4 \cdot 895$	4.644
	3	7.547	6.968	6.667	$6 \cdot 273$
	4	$9 \cdot 405$	7.724	$6 \cdot 812$	$6 \cdot 493$
	5	9.806	9.037	8.872	8.025
4	1	2.793	3.369	3.703	3.909
	2	5.950	$6 \cdot 054$	5.742	$5 \cdot 470$
	3	8.512	7.894	7.696	7.330
	4	10.333	8.921	8.042	$7 \cdot 578$
	5	10.887	$10 \cdot 246$	9.723	8.781
5	1	3.822	4.457	4.796	4.990
	2	$7 \cdot 056$	6.945	6.567	$6 \cdot 292$
	3	9.394	8.875	8.681	8.139
	4	11.372	$10 \cdot 143$	$9 \cdot 241$	8.736
	5	12.025	11.365	10.523	9.700
6	1	$4 \cdot 866$	$5 \cdot 529$	5.857	6.030
	2	8. 107	7.793	$7 \cdot 387$	$7 \cdot 116$
	3	$10 \cdot 257$	9.880	$9 \cdot 605$	8.918
	4	12.469	11.355	10.332	9.737
	5	$13 \cdot 186$	$12 \cdot 382$	11.435	10.829

Table 11-(continued)

n	s	H / D			
		$\overparen{0.2}$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$
7	1	5.913	$6 \cdot 583$	$6 \cdot 890$	7.037
	2	9.100	$8 \cdot 622$	8.208	7.946
	3	$11 \cdot 140$	$10 \cdot 884$	10.474	9.717
	4	13.587	$12 \cdot 507$	11.287	10.625
	5	14.351	13.330	12.448	11.740
8	1	6.957	7.619	7.899	8.020
	2	10.041	$9 \cdot 444$	9.034	8.782
	3	12.057	11.874	11.309	10.545
	4	14.704	13.527	$12 \cdot 171$	11.469
	5	15.507	14.298	13.346	12.572
9	1	7.996	8.638	8.887	8.984
	2	10.938	$10 \cdot 265$	9.865	$9 \cdot 625$
	3	13.005	$12 \cdot 843$	12.134	11.397
	4	15.808	14.399	13.036	12.296
	5	$16 \cdot 640$	15-299	$14 \cdot 167$	13.415

Note: $0^{a}=$ axisymmetric, $0^{t}=$ torsional.
the theories used. A similar trend is found to exist with the lowest frequencies of thin circular plates [14]. Because the thickness ratio of $0 \cdot 125$ is not very large, it is not surprising that Mindlin's theory gives reasonably accurate frequencies compared to the 3-D results, at least for the lower wave numbers. For instance, the percentage differences of the lowest ten frequencies are at most within $-1 \cdot 2 \%$ for the case of $H / D=0 \cdot 125$, and this occurs for the tenth frequency. The largest difference in the table is only $-3 \cdot 8 \%$ and occurs for the $(5,4)$ mode. The $(5,4)$ mode shape has five nodal diameters and three interior nodal circles (lines of zero w-displacement). For such a mode the wave lengths are much shorter than those of the first ten frequencies. The negative sign in the percentage differences indicates that Mindlin's plate theory produces underestimated frequencies. That is, while it provides improved 2-D results, compared with thin plate theory, it overcorrects them.

Table 4 shows a comparison of frequencies $\omega R_{o} \sqrt{(\rho / G)}$ from 3-D and the Mindlin solutions for annular plates of $\left(H / D_{o}, D_{i} / D_{o}\right)=(0 \cdot 2,0 \cdot 5)$ and $(0 \cdot 5,0 \cdot 5)$ with $v=0 \cdot 3$. The Mindlin data were taken from Hutchinson's paper [7]. Although for most frequencies, good agreement between them is observed, some serious diagreements are also seen. For the annular plate with $\left(H / D_{o}, D_{i} / D_{o}\right)=(0 \cdot 2,0 \cdot 5)$, the fourth axisymmetric frequency of $(n, s)=(0,4)$ is $10 \cdot 593$ and the frequency of $(n, s)=(2,1)$ is 6.923. The corresponding 3-D frequencies are 14.133 and 0.691 . Clearly, 6.923 is a typographical error, which should be read to be 0.6923 because it is higher than that (3.142) of the next mode, i.e., $(n, s)=(2,2)$.

5. COMPARISON WITH OTHER 3-D SOLUTIONS

Many researchers investigated the problem of 3-D vibrating bodies such as disks. Among them, Hutchinson [6] presented the 3-D analytical solutions for the vibrations of thick, free, solid circular plates. His solutions are based upon series consisting of Bessel functions of the first kind in r and trigonometric functions in θ and z, each of which satisfies term by term the governing equations of 3-D elasticity and some boundary conditions on

Table 12
3-D frequencies in $\omega R \sqrt{(\rho / G)}$ for symmetric modes of the circular plates with $v=0 \cdot 499$, based upon the Ritz method

		$\overbrace{}^{H / D}$			
n	s	$\overparen{0 \cdot 2}$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$
0^{a}	1	$4 \cdot 163$	3.973	3.730	3.459
	2	8.954	7.469	6.293	5.279
	3	11.564	8.679	$6 \cdot 871$	$6 \cdot 151$
	4	12.927	9.739	8.602	$7 \cdot 791$
	5	$13 \cdot 848$	11.586	$10 \cdot 269$	$9 \cdot 680$
0^{t}	1	$5 \cdot 136$	$5 \cdot 136$	5.136	$5 \cdot 136$
	2	$8 \cdot 417$	8.417	7.854	$6 \cdot 283$
	3	11.620	10.472	$8 \cdot 417$	$8 \cdot 115$
	4	14.796	11.620	$9 \cdot 384$	$8 \cdot 417$
	5	$15 \cdot 708$	11.663	11.512	$10 \cdot 504$
1	1	$2 \cdot 849$	2.838	$2 \cdot 821$	2.792
	2	$6 \cdot 381$	5.904	$5 \cdot 249$	4.653
	3	6.983	6.755	$6 \cdot 377$	5.279
	4	9.921	8.305	$6 \cdot 826$	$6 \cdot 614$
	5	$10 \cdot 410$	8.923	$7 \cdot 617$	6.815
2	1	$2 \cdot 349$	2.349	$2 \cdot 348$	$2 \cdot 348$
	2	$4 \cdot 422$	$4 \cdot 366$	$4 \cdot 246$	$3 \cdot 996$
	3	7.770	7.020	6.064	5.307
	4	8.756	8.043	6.674	5.868
	5	$11 \cdot 153$	8.748	8.131	$7 \cdot 493$
3	1	3.619	3.616	3.612	3.604
	2	6.011	$5 \cdot 816$	$5 \cdot 323$	4.676
	3	8.989	$7 \cdot 840$	6.899	$6 \cdot 483$
	4	$10 \cdot 148$	8.691	$7 \cdot 372$	$6 \cdot 770$
	5	11.996	9.764	$9 \cdot 149$	8.309
4	1	4.724	4.713	4.693	$4 \cdot 652$
	2	7.545	6.986	6.014	5.354
	3	10.051	8.682	$8 \cdot 128$	$7 \cdot 516$
	4	11.311	9.321	8.256	8.071
	5	12.614	11.013	9.964	$9 \cdot 225$
5	1	5.758	5.731	5.676	5.574
	2	8.970	7.785	6.699	$6 \cdot 206$
	3	10.949	9.814	9.048	8.383
	4	$12 \cdot 300$	10.086	9.603	9.511
	5	13.307	$12 \cdot 037$	$10 \cdot 821$	$10 \cdot 207$
6	1	6.753	6.699	6.593	6.454
	2	10.215	8.451	$7 \cdot 495$	$7 \cdot 159$
	3	11.784	10.909	9.910	$9 \cdot 239$
	4	13.080	11•108	10.990	$10 \cdot 868$
	5	$14 \cdot 325$	$12 \cdot 875$	11.734	11.234

Table 12-(continued overleaf)

Table 12-(continued)

n	s	H / D			
		$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$
7	1	7.722	7.631	$7 \cdot 478$	$7 \cdot 341$
	2	$11 \cdot 192$	9.149	8.379	$8 \cdot 142$
	3	12.732	11.763	10.768	$10 \cdot 100$
	4	13.795	12.414	12.321	$12 \cdot 009$
	5	15.540	13.709	$12 \cdot 700$	12.323
8	1	8.672	8.536	$8 \cdot 359$	8.243
	2	11.940	9.916	$9 \cdot 311$	$9 \cdot 131$
	3	$13 \cdot 841$	12.628	11.627	$10 \cdot 970$
	4	14.540	13.697	13.537	$12 \cdot 900$
	5	16.743	14.567	13.758	13.359
9	1	$9 \cdot 606$	9.426	9.247	$9 \cdot 157$
	2	12.602	10.745	$10 \cdot 266$	$10 \cdot 120$
	3	$15 \cdot 015$	13.495	12.490	$11 \cdot 850$
	4	15.329	14.947	14.583	$13 \cdot 694$
	5	17.639	$15 \cdot 458$	14.949	14.357

Note: $0^{a}=$ axisymmetric, $0^{t}=$ torsional.
shear stress. Other boundary conditions have to be satisfied approximately by imposing orthogonalizing conditions on them.
Most of his results presented were plotted as frequency versus height-to-diameter ratios with $v=0.344$. However, there were some data in the form of tables for convergence studies, and some of them are selected for comparison with the present 3-D solutions. Table 5 shows the convergence of dimensionless frequency ($\omega R \sqrt{ }(\rho / G)$) for the lowest antisymmetric mode with $n=1$ in the case of $H / D=0 \cdot 25 . N R$ and $N Z$ in the table represent the number of terms Hutchinson used in radial and axial directions, respectively. Even though the lowest frequency obtained was $3 \cdot 154$ (bold-faced), it may not be a converged one. Thus it seems that Hutchinson's series solutions converge somewhat slowly.
Table 6 , on the contrary, shows how well and rapidly the frequencies converge when using the Ritz method. For the same parameters as in Table 5, it gives a lowest frequency of 3.1457 which is exact to five digits. This frequency is attained with $I=7$ and $J=2$, where I and J are the upper limits of the polynomial terms used in equations (3). By looking at the frequencies with $I=7, J=3$ and $I=9, J=2$, one finds that it has converged at that value.
Hutchinson [7] also used the series method to obtain 3-D solutions for annular plates. Some of his results are seen in Table 4. It is seen there that most of his results agree well with those from the present 3-D Ritz method. The disagreements are mainly due to a lack of complete convergence in his values. However, there are other disagreements in Table 4 which are larger. These larger disagreements are: (1) For $H / D_{o}=0 \cdot 2,(n, s)=(0,4)$. The value of 10.398 presented by Hutchinson is actually for the second antisymmetric torsion mode (see Table 15 at the end of the present work). Table 4 is intended only to show flexural (coupled with thickness-shear) deformation modes, which the Mindlin theory can deal with. (2) For $H / D_{o}=0 \cdot 2,(n, s)=(2,1)$. The 3-D Hutchinson frequency of $6 \cdot 901$ is clearly a typographical error. It should be $0 \cdot 6901$. (3) For $H / D_{o}=0 \cdot 2,(n, s)=(3,4)$. The

Table 13
3-D frequencies in $\omega R \sqrt{(\rho / G)}$ for antisymmetric modes of the circular plates with $v=0 \cdot 499$, based upon the Rtiz method

n	s	$\underbrace{H / D}$			
		$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$
0^{a}	1	1.754	$2 \cdot 235$	$2 \cdot 551$	2.767
	2	4.908	$5 \cdot 337$	$5 \cdot 272$	4.978
	3	7.872	$7 \cdot 110$	6.583	$6 \cdot 406$
	4	9.635	9.174	9.085	$8 \cdot 201$
	5	11.688	$10 \cdot 551$	9.311	8.702
0^{t}	1	$7 \cdot 854$	$5 \cdot 236$	3.927	$3 \cdot 142$
	2	$9 \cdot 384$	$7 \cdot 334$	$6 \cdot 465$	6.020
	3	11.512	9.913	9.288	8.984
	4	14.025	12.745	11.781	9.425
	5	16.751	15.695	12.265	10.733
1	1	3.162	3.601	3.534	$3 \cdot 185$
	2	6.335	$5 \cdot 522$	4.706	$4 \cdot 173$
	3	8.144	5.943	4.971	$4 \cdot 775$
	4	8.361	$7 \cdot 282$	7.094	6.616
	5	9.659	8.392	7.786	7.441
2	1	0.9200	1.222	1.440	1.599
	2	4.515	$4 \cdot 790$	4.499	$4 \cdot 140$
	3	7.502	6.490	5.887	$5 \cdot 354$
	4	9.008	$6 \cdot 863$	$6 \cdot 146$	6.093
	5	$9 \cdot 148$	8.796	8.423	7.739
3	1	1.892	2.347	2.631	$2 \cdot 818$
	2	$5 \cdot 798$	$5 \cdot 855$	$5 \cdot 437$	$5 \cdot 088$
	3	8.493	7.495	7.081	6.572
	4	9.853	8.031	$7 \cdot 383$	$7 \cdot 286$
	5	$10 \cdot 268$	$10 \cdot 152$	9.490	8.636
4	1	2.940	3.475	3.776	3.959
	2	$7 \cdot 013$	6.831	$6 \cdot 357$	6.027
	3	9.394	8.566	$8 \cdot 297$	7.661
	4	10.868	$9 \cdot 260$	8.547	$8 \cdot 396$
	5	11.634	11.363	10.405	$9 \cdot 506$
5	1	4.015	4.583	4.877	$5 \cdot 044$
	2	$8 \cdot 159$	$7 \cdot 760$	$7 \cdot 276$	6.970
	3	10.284	9.684	9.439	8.534
	4	11.978	10.470	9.644	9.490
	5	12.891	12.426	11.277	$10 \cdot 506$
6	1	$5 \cdot 095$	5.667	5.941	6.086
	2	$9 \cdot 239$	8.673	8.203	7.918
	3	11.209	10.818	10.372	$9 \cdot 305$
	4	$13 \cdot 126$	11.628	10.766	10.537
	5	$14 \cdot 122$	13.373	12.222	11.565

Table 13-(continued overleaf)

Table 13-(continued)

n	s	H / D			
		$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$
7	1	$6 \cdot 169$	6.727	6.975	$7 \cdot 096$
	2	$10 \cdot 262$	9.586	$9 \cdot 138$	8.871
	3	$12 \cdot 182$	11.947	$11 \cdot 167$	$10 \cdot 079$
	4	14.282	12.705	11.881	$11 \cdot 505$
	5	$15 \cdot 324$	$14 \cdot 264$	13.255	12.572
8	1	$7 \cdot 232$	7.764	7.984	8.083
	2	11.239	$10 \cdot 503$	10.080	9.826
	3	13.199	13.059	11.926	$10 \cdot 891$
	4	$15 \cdot 431$	$13 \cdot 676$	12.952	$12 \cdot 408$
	5	16.499	$15 \cdot 178$	$14 \cdot 258$	$13 \cdot 586$
9	1	8.283	8.783	8.974	9.052
	2	$12 \cdot 187$	11.428	11.029	10.784
	3	14.245	$14 \cdot 137$	12.695	11.745
	4	16.568	14.560	13.974	13.279
	5	17.648	16.158	15.179	$14 \cdot 607$

Note: $0^{a}=$ axisymmetric, $0^{t}=$ torsional.

3-D Hutchinson value of 10.234 is actually for $s=5$ (see Table 15 , where 10.2331 is listed for this mode). (4) For $H / D_{o}=0 \cdot 5,(n, s)=(0,3),(0,4)$ and (1, 4). The 3-D Hutchinson frequencies of $7 \cdot 503,8.259$ and $6 \cdot 401$, respectively, for these modes are much lower than the converged Ritz values shown. Because 8.259 is close to the Ritz value of $8 \cdot 258$, it may be that $7 \cdot 503$ is an extraneous root.

Gladwell and Vijay [15] used the finite element to obtain natural frequencies of annular plates for modes up to $n=2$, using toroidal elements. In Table 7, frequencies from the Ritz and finite element methods are compared for the annular plate having $\left(H / D_{o}, D_{i} / D_{o}\right)=(0 \cdot 2941,0 \cdot 1765)$ with $v=0 \cdot 3$. From the table, it is seen that none of the frequencies from the finite element method are lower than those from the Ritz method. The finite element results are quite accurate since most frequencies have differences of less than $1 \cdot 0 \%$. The largest difference is at most $1 \cdot 39 \%$ for the mode $(n, s)=(0,5)$.

6. ACCURATE NATURAL FREQUENCIES OF CIRCULAR AND ANNULAR PLATES

Having had its convergence and accuracy established, the 3-D Rtiz method is now used to obtain accurate frequencies for completely free circular and annular plates.

In Tables 8 and 9, non-dimensional frequencies $\omega R \sqrt{(\rho / G)}$ are presented for circular plates with $H / D=0 \cdot 2,0 \cdot 3,0 \cdot 4,0 \cdot 5$ and $v=0 \cdot 3$, for modes which are symmetric and antisymmetric, respectively, to the midplane of the plate. There are 55 frequencies from $(n, s)=(0,1)$ to $(9,5)$. The symmetric modes involve midplane stretching (except for the torsional modes), whereas the antisymmetric modes include those which are predominantly flexural (as well as thickness-shear modes). Rigid body mode frequencies, which are zero, are excluded from the tables. Hutchinson [6] gave 10 plots of $\omega R \sqrt{(\rho / G)}$ versus H / D, with $n=0-4$, including the symmetric and antisymmetric modes. The range of H / D was between 0 and 2, and the frequency parameter was displayed within $0-5$. There are good agreements between the results of Tables 8 and 9 and their plots except for two plots for

TABLE 14
3-D frequencies in $\omega R_{o} \sqrt{(\rho / G)}$ for symmetric modes of the annular plates with $H / D_{o}=0 \cdot 2$ and $v=0 \cdot 3$, based upon the Ritz method

n	s	$\overbrace{0 \cdot}^{D_{i} / D_{0}}$		
		${ }_{0 \cdot 1}$	${ }_{0.5}$	$0 \cdot 9$
0^{a}	1	$3 \cdot 319$	$2 \cdot 234$	1.698
	2	$8 \cdot 161$	9.957	5.905
	3	11.353	11.343	13.222
	4	11.548	$12 \cdot 207$	$20 \cdot 258$
	5	13.024	14.295	33.271
0^{t}	,	5.142	$6 \cdot 814$	15.708
	2	8.457	$12 \cdot 856$	31.416
	3	11.739	15.708	31.482
	4	15.044	$17 \cdot 122$	$35 \cdot 183$
	5	$15 \cdot 708$	19.046	44.476
1	1	2.748	$2 \cdot 806$	2.393
	2	6.031	$7 \cdot 372$	5.953
	3	6.879	9.868	$13 \cdot 119$
	4	10.233	11.386	15.906
	5	10.453	12.077	20.279
2	1	$2 \cdot 210$	0.9490	$0 \cdot 1382$
	2	$4 \cdot 149$	$4 \cdot 177$	3.771
	3	6.839	8.630	6.097
	4	8.493	9.721	12.897
	5	$10 \cdot 460$	11.516	16.416
3	1	3.594	2.249	$0 \cdot 3883$
	2	5.788	$5 \cdot 717$	5.306
	3	8.733	9.441	$6 \cdot 330$
	4	10.079	$10 \cdot 270$	12.686
	5	11.545	11.744	$17 \cdot 112$
4	1	4.685	3.622	0.7372
	2	$7 \cdot 349$	$7 \cdot 209$	6.634
	3	9.988	9.626	6.875
	4	11.260	11.310	12.574
	5	11.926	$12 \cdot 130$	17.919
5	1	5.700	4.969	$1 \cdot 177$
	2	8.834	8.575	$7 \cdot 029$
	3	10.932	10.028	8.375
	4	11.987	11.924	12.629
	5	12.617	$12 \cdot 671$	18.801
6	1	6.679	$6 \cdot 237$	1.699
	2	10.166	9.806	$7 \cdot 483$
	3	11.674	$10 \cdot 630$	9.732
	4	12.571	12.467	12.952
	5	13.687	13.349	19.732

[^0]Table 15
3-D frequencies in $\omega R_{o} \sqrt{(\rho / G)}$ for antisymmetric modes of the annular platers with $H / D_{o}=0 \cdot 2$ and $v=0 \cdot 3$, based upon the Ritz method

n	s	$\overbrace{}^{D_{i} / D_{o}}$		
		$0 \cdot 1$	$0 \cdot 5$	$0 \cdot 9$
0^{a}	1	1.433	$1 \cdot 388$	1.648
	2	$4 \cdot 491$	8.321	12.694
	3	$7 \cdot 432$	$9 \cdot 127$	25.935
	4	$9 \cdot 620$	14.133	$27 \cdot 155$
	5	10.874	$15 \cdot 812$	33.814
0^{t}	1	$7 \cdot 854$	$7 \cdot 854$	$7 \cdot 854$
	2	$9 \cdot 388$	10.398	23.562
	3	11.542	15.065	$32 \cdot 447$
	4	14.124	$20 \cdot 602$	$39 \cdot 270$
	5	16.971	23.562	$39 \cdot 323$
1	1	2.717	1.943	$1 \cdot 688$
	2	5.643	8.039	8.084
	3	$7 \cdot 619$	8.534	12.726
	4	$8 \cdot 238$	8.945	23.512
	5	9.325	10.876	26.046
2	1	$0 \cdot 8909$	$0 \cdot 6907$	$0 \cdot 2769$
	2	4.064	$3 \cdot 123$	$1 \cdot 915$
	3	7.018	$8 \cdot 400$	8.707
	4	8.782	8.793	12.822
	5	8.969	$9 \cdot 233$	23.391
3	1	1.859	1.681	$0 \cdot 8203$
	2	$5 \cdot 351$	$4 \cdot 450$	$2 \cdot 382$
	3	8.144	$8 \cdot 808$	9.598
	4	9.719	8.986	$12 \cdot 982$
	5	10.064	10.233	$23 \cdot 254$
4	1	2.890	2.771	$1 \cdot 479$
	2	6.561	$5 \cdot 805$	3.036
	3	9.091	$9 \cdot 238$	$10 \cdot 651$
	4	10.715	9.587	13.202
	5	11.264	11.357	$23 \cdot 145$
5	1	3.951	$3 \cdot 881$	2.163
	2	7.709	$7 \cdot 141$	3.832
	3	9.980	9.857	11.797
	4	11.814	$10 \cdot 394$	13.483
	5	12.482	$12 \cdot 520$	23.091
6	1	$5 \cdot 022$	4.984	$2 \cdot 852$
	2	8.795	$8 \cdot 421$	4.728
	3	$10 \cdot 881$	10.641	12.988
	4	12.961	11.372	13.827
	5	13.689	13.686	$23 \cdot 111$

Note: $0^{a}=$ axisymmetric, $0^{t}=$ torsional.
$n=4$. These two plots are so unusual that no reasonable explanation can be made. Indeed, he recently revised his paper to correct an error in the plots shown for the circumferential order four [16]. The new plotted frequencies are found to be somewhat higher than those in the tables, which indicates that his plots may be based upon inadequately converged frequencies.

It is interesting to note that some of the torsional mode $(n=0)$ frequencies in Table 8 $(5 \cdot 136,8 \cdot 417,11 \cdot 620)$ are independent of H / D. These are for modes which have cylindrical nodal surfaces along through the thickness of the plate. On the other hand, frequencies which are proper multiples of $\pi(15 \cdot 708,10 \cdot 472,7 \cdot 854,6 \cdot 283)$ are for modes which have circular cross-sections as nodal planes.
To show the influence of Poisson's ratio on the frequencies, Tables 10 to 13 are also presented. Tables 10 and 11 display the frequencies of symmetric and antisymmetric modes for the thickness ratios of Tables 8 and 9 , except with $v=0$, and Tables 12 and 13 are for $v=0.499$. (The upper limit of $v=0.5$ for an isotropic material cannot be achieved exactly with the existing computer program due to a singularity.) It is seen that the torsional frequencies do not depend upon Poisson's ratio.
Finally, Tables 14 and 15 give the frequencies $\omega R_{o} \sqrt{(\rho / G)}$ for the annular plates with $\left(H / D_{o}, D_{i} / D_{o}\right)=(0 \cdot 2,0 \cdot 1),(0 \cdot 2,0 \cdot 5)$ and $(0 \cdot 2,0 \cdot 9)$ with $v=0 \cdot 3$. There are eight sets of circumferential modes ranging from 0 to 6 . It is noted that the lowest symmetric and antisymmetric modes come from $(n, s)=(2,1)$, regardless of D_{i} / D_{o}. However, the frequencies are quite different, i.e., 2.2099 (S) and $0 \cdot 8909(A)$ for $D_{i} D_{o}=0 \cdot 1,0 \cdot 9490(S)$ and $0.6907(A)$ for $D_{i} D_{o}=0.5$, and $0.1382(S)$ and $0.2769(A)$ for $D_{i} / D_{o}=0.9$, where (S) and (A) mean symmetric and antisymmetric frequencies, respectively. Thus, it is observed that the fundamental mode shifts from antisymmetric $(2,1)$ to symmetric $(2,1)$ as the annular plate becomes a ring type of geometry. This is because the out-of-plane, flexural modes of plate-like configurations have lower frequencies than the in-plane, stretching modes. This is seen for all circumferential modes (n). Note that Table 15 contains some of the 3-D frequencies obtained by the Ritz method shown in Table 4.

7. CONCLUDING REMARKS

Extensive and accurate frequency data determined by the 3-D Ritz analysis have been presented for circular and annular plates. The analysis uses the 3-D equations of the theory of elasticity in their general forms for isotropic materials. They are only limited to small strains. No other constraints are placed upon the displacements. This is in stark contrast with the 2-D plate theories, which make very limiting assumptions about the displacement variations through the plate thickness.
Thorough convergence studies of the type shown in Tables 1 and 2 have been made [5] which indicate that the benchmark frequency values given in Tables $8-15$ have converged to at least four significant figures. Because the admissible functions given by equations (3) are mathematically complete, they are capable of representing any deformation of the plate. That is, there are no constraints on the displacements. Thus, as sufficient polynomial terms are taken in equations (3), the frequencies will converge to the exact values, and the frequencies in Tables $8-15$ may be considered as being exact to four digits.
The high accuracy is obtained with reasonable computational time because, although the analysis is 3-D, one variable (θ) is separated out early in equations (2), due to the required periodicity of the displacements in θ (i.e., $f(\theta+2 \pi)=f(\theta)$). This reduces the problem to a sequence of 2-D mathematical problems, one for each circumferential wave number, n. The 2-D problems require much less computer time and capacity than would a 3-D problem.

The extensive data includes frequencies for all vibration modes which are symmetric with respect to the midplane $(\zeta=0)$ of the plate, as well as those which are antisymmetric. The symmetric modes involve midplane stretching $(u \neq 0, v \neq 0)$, except for the case $n=0$, which is torsional. The antisymmetric modes are combinations of predominantly bending and thickness-shear deformations (except for the torsional modes). For the thinner plates the antisymmetric modes are typically the most important. For example, Tables 8 and 9 show that for $H / D=0 \cdot 2$, the first two frequencies, and seven of the first ten, are associated with antisymmetric modes; but, for $H / D=0 \cdot 5$, only half of the first ten frequencies are for antisymmetric modes.

The frequencies given in Tables $8-15$ serve as valuable benchmark results against which results from 2-D thick plate theories or approximate methods (for example, finite elements, finite differences) may be compared in order to establish their accuracies. Besides the 2-D Mindlin theory used here for comparison (Tables 3 and 4), there are higher order 2-D plate theories proposed by numerous authors. Their governing equations are much more complicated than those of the Mindlin theory. One wonders how accurate their frequencies would be in representing a 3-D problem.
The 3-D method of analysis has been presented in a form which admits fixed boundaries as well as free ones, and it could be applied straightforwardly to such problems. Thus, one could obtain accurate frequencies for "clamped" circular plates, or for annular plates having one or both circular boundaries "clampled". The "clamping" simply requires all three displacement components at a boundary to be zero. Nothing is said about their slopes. One would expect the convergence of such solutions to be slower than that for a free boundary because of the stress singularities which arise at the top and bottom corners $\left(\zeta= \pm \frac{1}{2}\right)$ of the fixed boundaries.

REFERENCES

1. A. W. Leissa and J. So 1995 Journal of the Acoustical Society of America 98, 2122-2135. Comparisons of vibration frequencies for rods and beams from one-dimensional and three-dimensional analyses.
2. A. W. Leissa and J. So 1995 Journal of the Acoustical Society of America 98, 2136-2141. Accurate vibration frequencies of circular cylinders from three-dimensional analysis.
3. J. So and A. W. Leissa Journal of Vibration and Acoustics (to appear in 1997, Vol. 119). Free vibrations of thick hollow circular cylinders from three-dimensional analysis.
4. A. W. Leissa and J. So 1995 Journal of Vibration and Control 1, 145-158. Three-dimensional vibrations of truncated hollow cones.
5. J. So 1993 Ph.D. Dissertation, The Ohio State University. Three-dimensional vibration analysis of elastic bodies of revolution.
6. J. R. Hutchinson 1984 Journal of Applied Mechanics 51, 581-585. Vibration of thick free circular plates, exact versus approximate solutions.
7. J. R. Hutchinson and S. A. El-Azhari 1986 Refined Dynamical Theories of Beams, Plates, and Shells and Their Applications, Proceedings of the Euromech-Colloquium 219, 102-111. On the vibration of thick annular plates.
8. M. Endo 1972 Bulletin of JSME 15, 446-454. Flexural vibrations of a ring with arbitrary cross section.
9. R. K. Singal and K. Williams 1988 Journal of Vibration, Acoustics, Stress, and Reliability in Design 110, 533-537. A theoretical and experimental study of vibrations of thick circular cylindrical shells and rings.
10. R. D. MindLin 1955 Journal of Applied Mechanics 18, 31-38. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates.
11. H. Deresiewicz and R. D. Mindlin 1955 Journal of Applied Mechanics 22, 86-88. Axially symmetric flexural vibrations of isotropic elastic plates.
12. H. Deresiewicz and R. D. Mindin 1954 Journal of Applied Physics 25, 1329-1332. Thickness shear and flexural vibrations of a circular disk.
13. T. Irie, G. Yamada and S. Aomura 1980 Journal of Applied Mechancis 47, 652-655. Natural frequencies of Mindlin circular plates.
14. A. W. Leissa 1993 Acoustical Society of America, Originally issued by NASA 1973, 11-12, Vibration of plates.
15. G. M. L. Gladwell and D. K. Vijay 1975 Journal of Sound and Vibration 42, 387-397. Natural frequencies of free finite length circular cylinders.
16. J. R. Hutchinson 1995 Journal of Applied Mechanics 62, 818-819. Vibrations of solid cylinders revisited.

[^0]: Note: $0^{a}=$ axisymmetric, $0^{t}=$ torsional.

