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The Ritz method is applied in a three-dimensional (3-D) analysis to obtain accurate
frequencies for thick circular and annular plates. The method is formulated in a manner
which allows one to have any combination of free or fixed plate boundaries. Admissible
functions for the three displacement components are chosen as trigonometric functions in
the circumferential co-ordinate, and algebraic polynomials in the radial and axial
co-ordinates. Upper bound convergence of the non-dimensional frequencies to at least four
significant figures is demonstrated. Comparisons of results are made with ones obtained
by others using 2-D Mindlin thick plate theory, and with other 3-D solutions. Extensive
and accurate (four significant figure) frequencies are presented for completely free circular
plates having thickness-to-diameter ratios of 0·2, 0·3, 0·4 and 0·5 for Poisson’s ratios n=0,
0·3 and 0·499. Frequencies are also given for thick annular plates having a
thickness-to-outer-diameter of 0·2, inside-to-outside-diameter ratios of 0·1, 0·5 and 0·9, and
n=0·3. All 3-D modes are included in the analyses; e.g., flexural thickness-shear, inplane
stretching, and torsional. The circular and annular plate frequency data given is exact to
at least four digits, thus being benchmark data against which results from 2-D thick plate
theories or other approximate methods (e.g., finite elements) may be compared.
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1. INTRODUCTION

Vibrating plates have tremendous practical importance in the world. Recognizing this
importance, more than 2000 papers have been published on the subject of free, undampled
vibrations alone, determining natural frequencies. At least 90 per cent of the published
results are theoretical, based upon two-dimensional plate theories, either classical
thin-plate theory, or theories which consider shear deformation and rotary inertia effects
and are thought to be reasonably accurate for thick plates and/or higher frequency modes.
However, the accuracies of these can only be assessed when results from them are
compared with truly accurate results obtained from three-dimensional (3-D) analysis,
where no artificial, kinematic constraints are placed upon the displacements. The present
work provides such accurate, 3-D results for two important classes of problems, circular
and annular plates, for the only types of edge conditions which can be exactly duplicated
in reality—completely free.

In recent papers by the present authors [1–3], a 3-D method of analysis was presented
for the free vibrations of solid and hollow cylinders of elastic and isotropic material. The
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analysis was based upon the Ritz method using two co-ordinate systems: (1)
cylindrical co-ordinates (r, u, z); and (2) local co-ordinates where u and z in
cylindrical co-ordinates remain the same, but r is measured from the middle of the
cylindrical wall. Also, as a general case, 3-D vibrations of truncated hollow cones were
investigated [4, 5].

Other 3-D free vibrations of finite circular and hollow cylinders were studied by many
researchers. Among them, some investigated the free vibrations of thick circular and
annular plates using their own methods [6–9]. Some of their solutions were also compared
with those of Mindlin’s plate theory [10].

The primary objective of the present work is to present truly accurate values of the
free-vibration frequencies of thick circular and annular plates, which are complemen-
tary to references [1–3]. In reference [2] accurate frequencies were given for completely
free, solid circular cylinders, as well as for ones having one end fixed. For the
completely free case, frequencies obtained were exact to four significant figures.
However, none of the cylinders may be regarded as plates, for their length-to-
diameter (L/D) ratios were 1, 1·5, 2, 3 and 5. The accuracy of 1-D theories for
vibrating rods and beams (L/D=3, 5, 10, 20, 40) was the theme of reference [1]. No
comparisons were made for plate-like cylinders. Reference [3] considered hollow
circular cylinders. In the present work accurate frequencies are given for plate-like
cylinders (L/D=0·5 and less). Besides presenting the method of analysis and
establishing its accuracy by means of convergence studies, comparisons are made with
the other most accurate 3-D results known to date. The accurate 3-D results presented
here serve as benchmarks against which other approximate methods (e.g., finite
element, finite difference methods) and 2-D plate theories, first order and higher order,
may be tested.

Figure 1. (a) Annular plate with local co-ordinate system (q, u, z). (b) Circular plate with cylindrical
co-ordinate system (r, u, z).
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T 1

Convergence frequencies in vRz(r/G) for the five lowest axisymmetric (n=0) and
z-symmetric modes, where H/D=0·2 and n=0·3

I J D 1 2 3 4 5

1 1 8 3·44267 10·22177 14·35485 15·94322 20·58867
3 1 16 3·43639 8·62444 11·86034 12·35021 14·37381
5 1 24 3·43639 8·59221 11·56885 12·05093 14·26232
7 1 32 3·43639 8·59200 11·55634 12·04391 13·52930
9 1 40 3·43639 8·59199 11·55615 12·04274 13·47270

10 1 44 3·43639 8·59199 11·55615 12·04251 13·47146

1 2 12 3·44267 10·19499 13·85522 15·61110 17·59332
3 2 24 3·43638 8·62002 11·54181 12·12318 13·91331
5 2 36 3·43638 8·58884 11·49409 11·62695 13·88971
7 2 48 3·43638 8·58868 11·49025 11·61245 13·42799
9 2 60 3·43638 8·58868 11·48998 11·61220 13·38522

10 2 66 3·43638 8·58868 11·48995 11·61217 13·38439

1 3 16 3·44267 10·19489 13·84592 15·60478 17·53649
3 3 32 3.43638 8.61992 11.53807 12.12207 13.90757
5 3 48 3·43638 8·58884 11·49182 11·62459 13·88422
7 3 64 3·43638 8·58867 11·48816 11·61002 13·42651
9 3 80 3·43638 8·58867 11·48791 11·60977 13·38422

1 4 20 3·44267 10·19489 13·84589 15·60476 17·53607
3 4 40 3·43638 8·61992 11·53806 12·12207 13·90755
5 4 60 3·43638 8·58884 11·49179 11·62456 13·88417
7 4 80 3·43638 8·58867 11·48815 11·61001 13·42635

1 5 24 3·44267 10·19489 13·84589 15·60476 17·53607
3 5 48 3·43638 8·61992 11·53806 12·12207 13·90755
5 5 72 3·43638 8·58884 11·49179 11·62455 13·88417
7 5 96 3·43638 8·58867 11·48815 11·61001 13·42632

1 6 28 3·44267 10·19489 13·84589 15·60476 17·53607
3 6 56 3·43638 8·61992 11·53806 12·12207 13·90755
5 6 84 3·43638 8·58884 11·49179 11·62455 13·88417
6 6 98 3·43638 8·58867 11·49077 11·61356 13·45765

2. ANALYSIS

A representative annular plate of inner diameter Di (=2Ri ) and outer diameter Do

(=2Ro ) and thickness H is shown in Figure 1. In the case of a solid circular plate, the
inner diameter vanishes, and thus the diameter D (=2R) and the thickness H are the only
two geometric parameters.

Cylindrical co-ordinates (r, u, z), also shown in the figure, are used in the analysis.
Location of the co-ordinate origin in the z-direction is chosen at the center of
the plate. For convenience, the r and z co-ordinates are made dimensionless as
follows:

j=
r
Ro

, z=
z
H

(1)

where Ro is the outer radius of the annular plate (R is used for the solid plate).
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Displacement components in the j, u and z directions are u, v and w. For the free,
undamped vibration, their time response is sinusoidal and, moreover, the circular
symmetry of the plate allows the displacement to be expressed by

u(j, u, z, t)=U(j, z) cos nu sin (vt+f)

v(j, u, z, t)=V(j, z) sin nu sin (vt+f)

w(j, u, z, t)=W(j, z) cos nu sin (vt+f) (2)

where v is a natural frequency, f is an arbitrary phase angle determined by the initial
conditions, and n=0, 1, 2, . . . , a. By substituting equations (2) into the three partial
differential equations of motion for the body, expressed in cylindrical co-ordinates, one
may verify that these are proper assumed forms for the displacements, and that u and t
are thereby uncoupled from j and z.

T 2

Convergence of frequencies in vRz(r/G) for the five lowest z-antisymmetric modes with
n=1, where H/D=0·2 and n=0·3

I J D 1 2 3 4 5

1 1 12 3·17854 8·21752 8·49207 11·20912 28·32614
3 1 24 2·79903 6·30186 8·17139 8·37331 9·92055
5 1 36 2·78186 5·87503 8·06383 8·30631 9·31771
7 1 48 2·78178 5·86208 8·05648 8·30325 9·21586
9 1 60 2·78177 5·86200 8·05623 8·30318 9·21243

10 1 66 2·78177 5·86200 8·05623 8·30318 9·21238

1 2 18 3·17654 8·21199 8·48836 11·15477 17·41577
3 2 36 2·79617 6·28169 8·15761 8·36294 9·86546
5 2 54 2·77967 5·85660 8·04636 8·29985 9·27091
7 2 72 2·77961 5·84440 8·03788 8·29662 9·17229
9 2 90 2·77961 5·84432 8·03772 8·29655 9·16873

1 3 24 3·17654 8·21199 8·48836 11·15456 16·95908
3 3 48 2·79613 6·27917 8·15719 8·36253 9·86451
5 3 72 2·77967 5·85651 8·04620 8·29980 9·27008
7 3 96 2·77961 5·84436 8·03778 8·29659 9·17212
9 3 120 2·77960 5·84428 8·03762 8·29652 9·16856

1 4 30 3·17654 8·21199 8·48836 11·15456 16·95127
3 4 60 2·79614 6·27971 8·15726 8·36259 9·86460
5 4 90 2·77967 5·85621 8·04612 8·29979 9·26966
7 4 120 2·77961 5·84436 8·03778 8·29659 9·17212
8 4 135 2·77960 5·84429 8·03772 8·29655 9·16903

1 5 36 3·17654 8·21199 8·48836 11·15456 16·95123
3 5 72 2·79613 6·27914 8·15718 8·36252 9·86450
5 5 108 2·77967 5·85650 8·04620 8·29980 9·27003
7 5 144 2·77961 5·84436 8·03778 8·29659 9·17212

1 6 42 3·17654 8·21199 8·48836 11·15456 16·95123
3 6 84 2·79616 6·28170 8·15748 8·36278 9·86484
5 6 126 2·77967 5·85651 8·04620 8·29980 9·27004
6 6 147 2·77962 5·84493 8·04512 8·29887 9·19670
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T 3

Comparison of non-dimensional frequencies vRz(r/G) for antisymmetric modes with
various ratios of thickness-to-diameter, from 3-D and 2-D Mindlin theory

H/D
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

n s 0·05 0·075 0·1 0·125

0 1 3-D 2 0·4329 2 0·6381 2 0·8314 2 1·011
2-D 2 0·4327 2 0·6375 2 0·8300 2 1·008
(%) (0·0) (−0·1) (−0·2) (−0·2)

2 3-D 8 1·763 8 2·477 8 3·059 8 3·524
2-D 8 1·759 8 2·465 8 3·036 8 3·489
(%) (−0·3) (−0·5) (−0·7) (−1·0)

3 3-D 3·761 5·012 5·898 6·521
2-D 3·741 4·964 5·821 6·415
(%) (−0·5) (−0·9) (−1·3) (−1·6)

4 3-D 6·214 7·895 8·948 9·582
2-D 6·162 7·787 8·789 9·385
(%) (−0·8) (−1·4) (−1·8) (−2·1)

1 1 3-D 4 0·9631 4 1·388 4 1·762 4 2·084
2-D 4 0·9618 4 1·385 4 1·754 4 2·071
(%) (−0·1) (−0·3) (−0·4) (−0·6)

2 3-D 2·658 3·637 4·381 4·938
2-D 2·6747 3·611 4·336 4·873
(%) (−0·4) (−0·7) (−1·0) (−1·3)

3 3-D 4·910 6·386 7·369 8·013
2-D 4·876 6·312 7·254 7·864
(%) (−0·7) (−1·2) (−1·6) (−1·9)

4 3-D 7·532 9·379 10·463 11·014
2-D 7·453 9·226 10·250 10·773
(%) (−1·0) (−1·6) (−2·0) (−2·2)

2 1 3-D 1 0·2576 1 0·3812 1 0·4995 1 0·6118
2-D 1 0·2575 1 0·3810 1 0·4991 1 0·6109
(%) (0·0) (−0·1) (−0·1) (−0·1)

2 3-D 7 1·616 7 2·275 7 2·817 7 3·253
2-D 7 1·612 7 2·265 7 2·2798 7 3·224
(%) (−0·2) (−0·5) (−0·7) (−0·9)

3 3-D 3·623 4·839 5·706 6·316
2-D 3·605 4·795 5·633 6·216
(%) (−0·5) (−0·9) (−1·3) (−1·6)

4 3-D 6·090 7·751 8·795 9·421
2-D 6·039 7·646 8·640 9·228
(%) (−0·8) (−1·3) (−1·8) (−2·0)

3 1 3-D 3 0·5891 3 0·8591 3 1·106 3 1·329
2-D 3 0·5887 3 0·8580 3 1·104 3 1·326
(%) (−0·1) (−0·1) (−0·2) (−0·3)

2 3-D 10 2·361 10 3·249 10 3·936 10 4·458
2-D 10 2·353 10 3·229 10 3·900 10 4·405
(%) (−0·3) (−0·6) (−0·9) (−1·2)

3 3-D 4·643 6·063 7·020 7·654
2-D 4·613 5·997 6·915 7·516
(%) (−0·6) (−1·1) (−1·5) (−1·8)

4 3-D 7·293 9·105 10·179 10·742
2-D 7·221 8·965 9·981 10·510
(%) (−1·0) (−1·5) (−1·9) (−2·2)

Table 3—(continued overleaf )
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T 3—(continued)

H/D
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

n s 0·05 0·075 0·1 0·125

4 1 3-D 5 1·016 5 1·458 5 1·843 5 2·172
2-D 5 1·015 5 1·454 5 1·863 5 2·162
(%) (−0·1) (−0·2) (−0·3) (−0·5)

2 3-D 3·181 4·283 5·088 5·669
2-D 3·166 4·248 5·030 5·589
(%) (−0·4) (−0·8) (−1·1) (−1·4)

3 3-D 5·702 7·298 8·318 8·950
2-D 5·658 7·206 8·178 8·773
(%) (−0·8) (−1·3) (−1·7) (−2·0)

4 3-D 8·513 10·448 11·524 11·963
2-D 8·415 10·266 11·278 11·767
(%) (−1·2) (−1·8) (−2·1) (−1·6)

5 1 3-D 6 1·529 6 2·154 6 2·673 6 3·096
2-D 6 1·526 6 2·147 6 2·660 6 3·077
(%) (−0·2) (−0·3) (−0·5) (−0·6)

2 3-D 4·059 5·355 6·255 6·875
2-D 4·036 5·304 6·173 6·765
(%) (−0·6) (−1·0) (−1·3) (−1·6)

3 3-D 6·793 8·536 9·595 10·200
2-D 6·731 8·414 9·419 9·986
(%) (−0·9) (−1·4) (−1·8) (−2·1)

4 3-D 9·743 11·776 12·823 13·062
2-D 9·615 11·547 12·533 12·562
(%) (−1·3) (−1·9) (−2·3) (−3·8)

6 1 3-D 9 2·116 9 2·929 9 3·570 9 4·072
2-D 9 2·111 9 2·915 9 3·547 9 4·039
(%) (−0·3) (−0·5) (−0·6) (−0·8)

2 3-D 4·985 6·454 7·427 8·069
2-D 4·952 6·382 7·317 7·927
(%) (−0·7) (−1·1) (−1·5) (−1·8)

3 3-D 7·907 9·773 10·850 11·403
2-D 7·825 9·619 10·636 11·154
(%) (−1·0) (−1·6) (−2·0) (−2·2)

4 3-D 10·985 13·081 14·069 14·049
2-D 10·819 12·810 13·741 13·780
(%) (−1·5) (−2·1) (−2·3) (−1·9)

A complementary set of functions may also be used for equations (2), replacing
cos nu by sin nu, and conversely. This gives the same vibratory mode shapes rotated
by 90° in u, and the same frequencies, except for n=0. For n=0, equations (2) yield
the axisymmetric modes which involve only u and w (for example, longitudinal
and/or radial extension). However, the complementary set for n=0 yields the
torsional modes, which involve only v, uncoupled from u and w. Thus, for the
circular or annular cross-section (but not for other cross-sections), there is no warping of
the cross-section during torsional vibration.

Using algebraic polynomials which are mathematically complete, displacement
functions U, V and W in equations (2) which are capable of satisfying any geometrical
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T 4

Comparison of frequencies vRoz(r/G) for the annular thick plates with n=0·3 by the 3-D
Ritz (3DR), 3-D Hutchinson’s series method (3DH), and Mindlin’s 2-D plate theory (2DM)

s
ZXXXXXXXXCXXXXXXXXV

H
Do

Di

Do
n Method 1 2 3 4

3DR 1·388 8·321 9·127 14·133
0 3DH 1·398 8·327 9·128 10·398

2DM 1·388 8·324 9·370 10·593

3DR 1·943 8·039 8·534 8·945
1 3DH 1·950 8·040 8·539 8·946

2DM 1·951 8·189 8·659 9·162
0·2 0·5

3DR 0·691 3·123 8·400 8·793
2 3DH 6·901 3·127 8·404 8·794

2DM 6·923 3·142 8·461 8·964

3DR 1·680 4·450 8·808 8·986
3 3DH 1·682 4·453 8·990 10·234

2DM 1·684 4·475 8·899 9·076

3DR 1·984 5·772 8·258 9·084
0 3DH 1·985 5·774 7·503 8·259

2DM 1·985 6·720 7·547 10·010

3DR 1·999 3·930 5·839 7·706
1 3DH 2·000 3·930 5·841 6·401

2DM 2·005 4·064 6·583 8·207

0·5 0·5
3DR 1·039 2·846 5·172 6·157

2 3DH 1·040 2·846 5·173 6·159
2DM 1·040 2·860 5·399 6·730

3DR 2·320 3·946 6·392 6·805
3 3DH 2·321 3·946 6·392 6·806

2DM 2·324 3·971 6·749 7·311

boundary conditions may be represented by

U(j, z)= f1(j) s
I

i=0

s
J

j=0

Aijj
izj

V(j, z)= f2(j) s
K

k=0

s
L

l=0

Bklj
kzl

W(j, z)= f3(j) s
M

m=0

s
P

p=0

Cmnj
mzp (3)
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T 5

Convergence of frequency vRz(r/G) for the lowest antisymmetric mode of a
circular plate with n=0·344 and H/D=0·25 based upon Hutchinson’s series

solution technique (n=1)

NZ
ZXXXXXXXXXXXCXXXXXXXXXXXV

NR 1 2 3 4

2 3·331 3·322 3·321 3·321
4 3·223 3·201 3·198 3·198
6 3·206 3·175 3·171 3·171
8 3·202 3·167 3·162 3·161

10 3·200 3·164 3·158 3·156
12 3·200 3·163 3·156 3·154

where fi are all unity if no displacement constraints are imposed on any boundaries. If the
outer edge is fixed and all other boundaries free,

f1 = f2 = f3 =1− j. (4)

If, as another example, both edges are fixed, then

f1 = f2 = f3 = (1− j)0Ri

Ro
− j1. (5)

An additional plane of symmetry at z=0 exists for plates having both faces free. In
such cases, one should take advantage of the symmetry by taking j and l to be
0, 2, 4, . . . and p=1, 3, 5, . . . for the symmetric modes, and j and l to be 1, 3, 5, . . . and
p=0, 2, 4, . . . for the antisymmetric modes. For plate-like cylinders (for example,
H/D=0·5 and less) the antisymmetric modes include the ones which are predominantly
flexural, whereas the symmetric modes include those which are predominantly inplane
stretching.

For the analysis of a circular plate with D and H only, considerable care must be
exercised in choosing the lower limits of i, j, k, l, m and p in equations (3). This is due
to the necessity to avoid strain and stress singularities at j=0. To circumvent this
singularity, one must take: (1) For the axisymmetric modes (n=0), i=1, 2, 3, . . . , a and

T 6

Convergence of frequency vRz(r/G) for the same plate as in Table 5, based
upon the Ritz method

J
ZXXXXXXXXXXXCXXXXXXXXXXXV

I 1 2 3 4

1 3·5526 3·5446 3·5430 3·5430
3 3·1668 3·1601 3·1600 3·1600
5 3·1511 3·1458 3·1458 1·1458
7 3·1510 3·1457 3·1457 3·1457
9 3·1510 3·1457 3·1457 —
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T 7

Comparison of frequencies in vRoz(r/G) for the annular plate with H/Do =0·2941,
Di /Do =0·1765, and n=0·3 by the Ritz (3DR) method and the finite element method (3DF)

s
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

n Method 1 2 3 4 5

For symmetric modes
3DR 3·0858 7·2372 7·8200 8·9145 9·5772

0 3DF 3·0874 7·2457 7·8345 8·9372 9·7051
(%) (0·05) (0·12) (0·18) (0·26) (1·39)

3DR 2·7717 6·0272 6·9938 7·8951
1 3DF 2·7778 6·0287 6·9986 7·9149

(%) (0·22) (0·03) (0·07) (0·25)

3DR 1·9684 4·0503 6·3799 7·7821 8·1282
2 3DF 1·9776 4·0535 6·3915 7·8033 8·1379

(%) (0·47) (0·08) (0·18) (0·27) (0·12)

For antisymmetric modes
3DR 1·7884 5·3168 6·7194 9·6715

0 3DF 1·7899 5·3276 6·7422 9·7096
(%) (0·09) (0·20) (0·34) (0·39)

3DR 2·9046 5·5678 6·0365 6·1431
1 3DF 2·9090 5·5755 6·0416 6·1547

(%) (0·15) (0·14) (0·08) (0·19)

3DR 1·1300 4·4052 6·1753 6·7662 7·6741
2 3DF 1·1324 4·4100 6·1907 6·7725 7·7279

(%) (0·21) (0·11) (0·25) (0·09) (0·70)

m=0, 1, 2, . . . , a. (2) For the torsional modes (n=0), k=1, 2, 3, . . . , a. (3) For one
other special case (n=1), i, k, m=1, 2, 3, . . . , a and terms A00 +A01z and B00 +B01z

added to U and V, respectively. These are rigid body translation and rotation terms that
are needed for the completeness of the admissible functions. (4) For general modes (ne 2),
i, k, m=1, 2, 3, . . . , a.

The Ritz method uses the energy functionals for the vibrating system. The maximum
potential energy during a vibratory cycle is due to the strain energy of deformation. It is

Vmax =
G
2

H g
1
2

−
1

2
g

1

A 6 2n

1−2n 0U,j +
n
j

V+
U
j

+
R0

H
W,z1

2

G1

+2$(U,j )2 +0nj V+
U
j1

2

+0Ro

H
W,z1

2

%G1

+$0V,j −
n
j

U−
V
j1

2

+0Ro

H
V,z −

n
j

W1
2

%G2

+0R0

H
U,z +W,j1

2

G17j dj dz (6)
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where G is the shear modulus of elasticity, n is Poisson’s ratio, subscripted symbols
following commas denote differentiations, and the lower limit of integration A on j is
Ri /R0. For the circular plate, A becomes zero. In addition, G1 and G2 in equation (6) are
defined by

G1 =g
2p

0

cos2 nu du=62p,
p,

if n=0
if nq 0

G2 =g
2p

0

sin2 nu d u=60,
p,

if n=0
if nq 0

. (7)

The maximum kinetic energy during a vibratory cycle is

Tmax =
r

2
v2R2

0H g
1
2

−
1

2
g

1

A

(U2G1 +V2G2 +W2G1)j dj dz (8)

where r is mass per unit volume.
Free vibration frequencies are obtained by applying the minimizing conditions

1

1Aij
(Vmax −Tmax)=0

1

1Bkl
(Vmax −Tmax)=0

1

1Cmp
(Vmax −Tmax)=0 (9)

for all values of i, j, k, l, m and p used in equations (3). This results in a generalized
eigenvalue problem in the form of Kx= lMx, where K and M are stiffness and mass
matrices, x is an eigenvector consisting of unknowns Aij , Bkl, Cmp and l is an
eigenvalue expressed by the square of non-dimensional frequency or v2R2

or/G. For a
non-trivial solution the determinant of (K− lM) is set equal to zero. From the zeros
(eigenvalues) of this determinant, the non-dimensional frequency parameters are
obtained. Corresponding mode shapes (eigenvectors) are determined by back-substi-
tution of the eigenvalues, one-by-one, in the usual manner.

For hollow cylinders (i.e., annular plates), a local co-ordinate system is used,
where u and z are the same but a radial direction q measured from the middle
of the cylindrical wall is introduced to the analysis (Figure 1). This local co-
ordinate system has a great advantage in reducing early numerical instability or
ill-conditioning [3]. In other words, relatively accurate frequencies can be
obtained in comparison with those based upon cylindrical co-ordinates. The
analysis based upon local co-ordinates (q, u, z) follows the same procedure
described above, but with different forms of energy functionals obtained
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T 8

3-D frequencies in vRz(r/G) for symmetric modes of the circular plates with n=0·3, based
upon the Ritz method

H/D
ZXXXXXXXXXXXCXXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

0a 1 3·436 3·398 3·336 3·238
2 8·589 7·468 5·740 4·643
3 11·488 7·689 6·398 5·617
4 11·610 9·245 7·397 6·381
5 13·383 9·910 8·761 8·005

0t 1 5·136 5·136 5·136 5·136
2 8·417 8·417 7·854 6·283
3 11·620 10·472 8·417 8·115
4 14·796 11·620 9·384 8·417
5 15·708 11·663 11·512 10·504

1 1 2·731 2·726 2·718 2·705
2 5·864 5·665 5·233 4·595
3 6·812 6·749 5·853 4·836
4 9·903 7·737 6·700 6·439
5 10·366 8·414 7·343 6·639

2 1 2·345 2·345 2·345 2·345
2 4·230 4·204 4·143 3·966
3 7·501 7·003 5·834 4·867
4 8·560 7·733 6·263 5·623
5 11·122 8·292 7·935 7·353

3 1 3·600 3·599 3·596 3·591
2 5·793 5·693 5·303 4·612
3 8·832 7·712 6·392 6·045
4 10·105 8·165 7·058 6·498
5 11·610 9·427 8·972 8·123

4 1 4·685 4·679 4·667 4·640
2 7·349 6·961 5·931 5·230
3 9·993 8·281 7·653 7·238
4 11·262 8·871 7·939 7·681
5 11·930 10·653 9·741 8·975

5 1 5·700 5·685 5·651 5·571
2 8·834 7·726 6·549 6·034
3 10·932 9·376 8·685 8·108
4 11·987 9·664 9·243 9·177
5 12·618 11·743 10·548 9·886

6 1 6·679 6·649 6·577 6·451
2 10·166 8·308 7·288 6·950
3 11·674 10·433 9·549 8·948
4 12·571 10·799 10·701 10·614
5 13·687 12·560 11·408 10·850

Table 8—(continued overleaf )
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T 8 (continued)

H/D
ZXXXXXXXXXXXCXXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

7 1 7·636 7·583 7·468 7·335
2 11·173 8·937 8·126 7·902
3 12·538 11·285 10·398 9·787
4 13·229 12·179 12·097 11·679
5 14·907 13·365 12·329 12·084

8 1 8·577 8·495 8·349 8·233
2 11·846 9·645 9·022 8·860
3 13·673 12·139 11·242 10·631
4 13·942 13·528 13·187 12·560
5 16·129 14·189 13·526 13·184

9 1 9·507 9·391 9·234 9·142
2 12·418 10·425 9·945 9·818
3 14·697 12·995 12·087 11·483
4 14·906 14·820 14·133 13·392
5 17·052 15·052 14·822 14·107

Note: 0a =axisymmetric, 0t =torsional.

same procedure described above, but with different forms of energy functionals obtained
by a transformation of co-ordinates. Equations (6) and (8) are rewritten as

Vmax =
G
2

H g
1
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−
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2
g

1
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−
1

2
6 2n
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G17g dj dz (10)

Tmax =
r

2
v2(Ro −Ri )2H g

1
2

−
1

2
g

1
2

−
1

2

(U2G1 +V2G2 +W2G1)g dj dz (11)

where j is redefined by q/(Ro −Ri ) and g= j+[(Ro +Ri )/(Ro −Ri )]/2.
As it is well known, frequencies by the Ritz method converged in the manner of upper

bounds to the exact values. These upper bounds are improved by increasing the numbers
of polynomial terms in equaions (3). Since the algebraic polynomials of equations (3) form
sets which are mathematically complete, as sufficient numbers of terms are taken,
monotonic convergence to the exact frequencies is guaranteed.
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T 9

3-D frequencies in vRz(r/G) for antisymmetric modes of the circular plates with n=0·3,
based upon the Ritz method

H/D
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

0a 1 1·464 1·896 2·193 2·402
2 4·415 4·889 4·890 4·677
3 7·353 6·847 6·359 6·145
4 9·323 8·755 8·700 8·079
5 11·088 10·182 9·066 8·221

0t 1 7·854 5·236 3·927 3·142
2 9·384 7·334 6·465 6·020
3 11·512 9·913 9·288 8·984
4 14·025 12·745 11·781 9·425
5 16·751 15·695 12·265 10·733

1 1 2·780 3·249 3·314 3·088
2 5·844 5·439 4·578 4·053
3 8·038 5·867 4·892 4·595
4 8·297 6·873 6·707 6·386
5 9·169 8·220 7·641 7·278

2 1 0·9078 1·211 1·430 1·591
2 4·089 4·475 4·330 4·040
3 7·087 6·348 5·784 5·243
4 8·881 6·773 5·936 5·850
5 8·984 8·351 8·160 7·665

3 1 1·860 2·322 2·613 2·805
2 5·353 5·572 5·270 4·962
3 8·155 7·299 6·969 6·477
4 9·723 7·918 7·128 6·994
5 10·069 9·714 9·368 8·632

4 1 2·890 3·442 3·755 3·945
2 6·561 6·564 6·172 5·870
3 9·092 8·318 8·166 7·593
4 10·715 9·140 8·286 8·062
5 11·265 10·976 10·368 9·411

5 1 3·951 4·546 4·855 5·030
2 7·709 7·492 7·067 6·779
3 9·980 9·391 9·295 8·460
4 11·814 10·361 9·383 9·148
5 12·482 12·134 11·227 10·374

6 1 5·022 5·628 5·919 6·072
2 8·795 8·393 7·965 7·692
3 10·881 10·482 10·227 9·222
4 12·961 11·542 10·489 10·183
5 13·688 13·179 12·145 11·397

Table 9—(continued overleaf )
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T 9—(continued)

H/D
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

7 1 6·090 6·688 6·954 7·082
2 9·825 9·287 8·870 8·609
3 11·819 11·569 11·034 9·994
4 14·125 12·646 11·556 11·134
5 14·870 14·136 13·129 12·326

8 1 7·151 7·727 7·963 8·067
2 10·805 10·181 9·781 9·528
3 12·798 12·639 11·799 10·809
4 15·287 13·640 12·576 12·027
5 16·021 15·080 13·992 13·270

9 1 8·202 8·747 8·953 9·035
2 11·750 11·080 10·697 10·449
3 13·810 13·679 12·571 11·666
4 16·441 14·527 13·552 12·887
5 17·139 16·077 14·871 14·222

Note: 0a =axisymmetric, 0t =torsional.

3. CONVERGENCE STUDIES

To demonstrate the convergence of the method, numerical results are presented for a
completely free, circular plate with H/D=0·2 and Poisson’s ratio n=0·3. Equal numbers
of polynomial terms were taken for U, V and W in equations (3) in either j-co-ordinate
or z-co-ordinate (i.e., I=K=M or J=L=P), although a computational optimization
could be obtained for some configurations and some mode shapes by using unequal
numbers of polynomial terms. For a typical circular plate, more polynomial terms in the
j-co-ordinate are required than in z (i.e., Iq J). Thus, the appropriate scheme for
convergence study is to increase I from 1 until numerical ill-conditioning occurs, while
keeping J at 1, 2, 3, and so on.

The non-dimensional frequencies (vRz(r/G)) are listed in Table 1 for the first five
modes which are both axisymmetic (n=0) and symmetric (in z). The first two columns
show the upper limits of I (=K=M) and J (=L=P) used in equations (3). The third
column indicates the size of the resulting eigenvalue determinant (D). As J increases, I
decreases due to ill-conditioning. Bold-faced values in Table 1 indicate the lowest
frequencies for the smallest determinant sizes from which they are obtained. First and
second frequencies converged to six-digit accurate values of 3·43638 and 8·58867 with
(I, J)= (3, 2) and (7, 3), respectively but the other frequencies are of three- or four-digit
accuracy. The maximum size of determinant (D) is 98.

Table 2 shows frequencies for the first five antisymmetric (in z) modes having n=1.
Similar to Table 1, the lowest values are obtained from the data set with J=3. First and
second frequencies converged to five-digit accurate values, while the remaining ones are
of only three- or four-digit accuracy. The maximum size of determinant (D) achieved is,
however, increased to 147, mainly because all three displacement components are involved
for modes other than n=0.

All computations above were performed in double precision (16 significant figures).
Higher precision (i.e., quadruple precision) computation would produce more accurate
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T 10

3-D frequencies in vRz(r/G) for symmetric modes of the circular plates with n=0, based
upon the Ritz method

H/D
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

0a 1 2·604 2·604 2·604 2·604
2 7·540 6·502 4·835 3·871
3 9·810 7·405 5·554 4·443
4 10·874 7·429 6·102 5·518
5 11·107 7·540 7·540 7·386

0t 1 5·136 5·136 5·136 5·136
2 8·417 8·417 7·854 6·283
3 11·620 10·472 8·417 8·115
4 14·796 11·620 9·384 8·417
5 15·708 11·663 11·512 10·504

1 1 2·474 2·474 2·474 2·474
2 5·003 5·003 4·986 4·017
3 6·734 6·565 5·003 4·508
4 9·590 6·734 5·458 5·003
5 9·845 7·277 6·734 6·328

2 1 2·336 2·336 2·336 2·336
2 3·796 3·796 3·796 3·796
3 6·783 6·741 5·079 4·056
4 8·301 6·783 5·819 5·164
5 9·949 7·277 6·783 6·783

3 1 3·545 3·545 3·545 3·545
2 5·257 5·257 5·249 4·366
3 8·298 6·883 5·257 5·257
4 9·895 7·618 6·490 5·952
5 10·120 8·298 8·298 7·739

4 1 4·571 4·571 4·571 4·571
2 6·775 6·775 5·618 4·919
3 9·666 7·074 6·775 6·757
4 10·320 8·201 7·261 6·775
5 10·918 9·666 9·253 8·481

5 1 5·529 5·529 5·529 5·529
2 8·297 7·393 6·159 5·631
3 10·502 8·297 8·064 7·550
4 10·956 8·901 8·297 8·297
5 11·219 10·956 9·991 9·272

6 1 6·457 6·457 6·457 6·435
2 9·808 7·842 6·827 6·457
3 10·704 9·665 8·872 8·332
4 11·688 9·808 9·808 9·808
5 12·201 11·848 10·761 10·094

Table 10—(continued overleaf )
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T 10—(continued)

H/D
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

7 1 7·369 7·369 7·369 7·294
2 10·973 8·401 7·580 7·369
3 11·304 10·462 9·673 9·107
4 12·265 11·304 11·304 10·932
5 13·423 12·611 11·567 11·304

8 1 8·272 8·272 8·272 8·181
2 11·322 9·047 8·390 8·272
3 12·780 11·274 10·465 9·882
4 12·917 12·780 12·402 11·772
5 14·635 13·379 12·780 12·780

9 1 9·169 9·169 9·169 9·086
2 11·750 9·760 9·237 9·169
3 13·623 12·091 11·252 10·662
4 14·232 14·163 13·258 12·611
5 15·846 14·232 14·232 13·811

Note: 0a =axisymmetric, 0t =torsional.

frequencies. There are some other ways to avoid the early ill-conditioning seen in the
tables, such as using orthogonal polynomials.

Extensive convergence studies for the 3-D Ritz method have also been made in
reference [5] for hollow cylinders (for which the annular, thick plate is a special case).
Convergence rates were observed which are similar to those exhibited for solid plates in
Tables 1 and 2.

4. COMPARISON WITH MINDLIN’S THEORY

The vibrations of thick plates have received much attention in a series of papers by
Mindlin and his co-workers. Mindlin and Deresiewicz used Mindlin’s plate theory to
consider axisymmetric (n=0) vibration of circular plates in reference [11] and to consider
the (n=1) mode in reference [12]. Irie et al. [13] obtained frequency data for circular plates
with various boundary conditions, including a free edge. The thickness ratios taken in their
paper are 0·025, 0·05, 0·075, 0·1 and 0·125 with a Poisson’s ratio (n) of 0·3.

Table 3 shows the comparison of dimensionless frequencies (vRz(r/G)) from the 3-D
and Mindlin’s theories for circular plates of H/D=0·05, 0·075, 0·1 and 0·125. A total of
28 modes—seven circumferential wave numbers (i.e., n=0, 1, 2, . . . , 6) and four radial
mode numbers (i.e., s=1, 2, 3, 4)—are selected for the frequency comparison. The
bold-faced integers in front of frequency data indicate the ascending order of the ten lowest
frequencies. In addition, the numbers in the parentheses are the percentage differences
expressed by

Difference (%)=
(2-D frequency)− (3-D frequency)

3-D frequency
. (12)

From the table, it is seen that the lowest ten frequencies arise in the order of
(n, s)= (2, 1), (0, 1), (3, 1), (1, 1), (4, 1), (5, 1), (2, 2), (0, 2), (6, 1) and (3, 2), regardless of
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T 11

3-D frequencies in vRz(r/G) for antisymmetric modes of the circular plates with n=0,
based upon the Ritz method

H/D
ZXXXXXXXXXXXCXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

0a 1 1·148 1·503 1·749 1·922
2 3·839 4·324 4·403 4·283
3 6·664 6·490 6·020 5·698
4 8·896 8·129 7·969 7·329
5 10·331 9·589 8·534 7·989

0t 1 7·854 5·236 3·927 3·142
2 9·384 7·334 6·465 6·020
3 11·512 9·913 9·288 8·984
4 14·025 12·745 11·781 9·425
5 16·751 15·695 12·265 10·733

1 1 2·355 2·797 2·934 2·854
2 5·206 5·253 4·443 3·852
3 7·755 5·715 4·763 4·389
4 8·172 6·450 6·176 5·961
5 8·716 7·836 7·220 6·629

2 1 0·8857 1·189 1·411 1·575
2 3·588 4·003 3·981 3·789
3 6·447 6·108 5·589 5·030
4 8·589 6·614 5·659 5·477
5 8·861 7·759 7·627 7·278

3 1 1·801 2·272 2·574 2·776
2 4·791 5·085 4·895 4·644
3 7·547 6·968 6·667 6·273
4 9·405 7·724 6·812 6·493
5 9·806 9·037 8·872 8·025

4 1 2·793 3·369 3·703 3·909
2 5·950 6·054 5·742 5·470
3 8·512 7·894 7·696 7·330
4 10·333 8·921 8·042 7·578
5 10·887 10·246 9·723 8·781

5 1 3·822 4·457 4·796 4·990
2 7·056 6·945 6·567 6·292
3 9·394 8·875 8·681 8·139
4 11·372 10·143 9·241 8·736
5 12·025 11·365 10·523 9·700

6 1 4·866 5·529 5·857 6·030
2 8·107 7·793 7·387 7·116
3 10·257 9·880 9·605 8·918
4 12·469 11·355 10·332 9·737
5 13·186 12·382 11·435 10·829

Table 11—(continued overleaf )
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Table 11—(continued)

H/D
ZXXXXXXXXXXXCXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

7 1 5·913 6·583 6·890 7·037
2 9·100 8·622 8·208 7·946
3 11·140 10·884 10·474 9·717
4 13·587 12·507 11·287 10·625
5 14·351 13·330 12·448 11·740

8 1 6·957 7·619 7·899 8·020
2 10·041 9·444 9·034 8·782
3 12·057 11·874 11·309 10·545
4 14·704 13·527 12·171 11·469
5 15·507 14·298 13·346 12·572

9 1 7·996 8·638 8·887 8·984
2 10·938 10·265 9·865 9·625
3 13·005 12·843 12·134 11·397
4 15·808 14·399 13·036 12·296
5 16·640 15·299 14·167 13·415

Note: 0a =axisymmetric, 0t =torsional.

the theories used. A similar trend is found to exist with the lowest frequencies of thin
circular plates [14]. Because the thickness ratio of 0·125 is not very large, it is not surprising
that Mindlin’s theory gives reasonably accurate frequencies compared to the 3-D results,
at least for the lower wave numbers. For instance, the percentage differences of the lowest
ten frequencies are at most within −1·2% for the case of H/D=0·125, and this occurs
for the tenth frequency. The largest difference in the table is only −3·8% and occurs for
the (5, 4) mode. The (5, 4) mode shape has five nodal diameters and three interior nodal
circles (lines of zero w-displacement). For such a mode the wave lengths are much shorter
than those of the first ten frequencies. The negative sign in the percentage differences
indicates that Mindlin’s plate theory produces underestimated frequencies. That is, while
it provides improved 2-D results, compared with thin plate theory, it overcorrects them.

Table 4 shows a comparison of frequencies vRoz(r/G) from 3-D and the Mindlin
solutions for annular plates of (H/Do , Di /Do )= (0·2, 0·5) and (0·5, 0·5) with n=0·3. The
Mindlin data were taken from Hutchinson’s paper [7]. Although for most frequencies,
good agreement between them is observed, some serious diagreements are also seen. For
the annular plate with (H/Do , Di /Do )= (0·2, 0·5), the fourth axisymmetric frequency of
(n, s)= (0, 4) is 10·593 and the frequency of (n, s)= (2, 1) is 6·923. The corresponding 3-D
frequencies are 14·133 and 0·691. Clearly, 6·923 is a typographical error, which should be
read to be 0·6923 because it is higher than that (3·142) of the next mode, i.e., (n, s)= (2, 2).

5. COMPARISON WITH OTHER 3-D SOLUTIONS

Many researchers investigated the problem of 3-D vibrating bodies such as disks.
Among them, Hutchinson [6] presented the 3-D analytical solutions for the vibrations of
thick, free, solid circular plates. His solutions are based upon series consisting of Bessel
functions of the first kind in r and trigonometric functions in u and z, each of which satisfies
term by term the governing equations of 3-D elasticity and some boundary conditions on



   33

T 12

3-D frequencies in vRz(r/G) for symmetric modes of the circular plates with n=0·499,
based upon the Ritz method

H/D
ZXXXXXXXXXXXCXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

0a 1 4·163 3·973 3·730 3·459
2 8·954 7·469 6·293 5·279
3 11·564 8·679 6·871 6·151
4 12·927 9·739 8·602 7·791
5 13·848 11·586 10·269 9·680

0t 1 5·136 5·136 5·136 5·136
2 8·417 8·417 7·854 6·283
3 11·620 10·472 8·417 8·115
4 14·796 11·620 9·384 8·417
5 15·708 11·663 11·512 10·504

1 1 2·849 2·838 2·821 2·792
2 6·381 5·904 5·249 4·653
3 6·983 6·755 6·377 5·279
4 9·921 8·305 6·826 6·614
5 10·410 8·923 7·617 6·815

2 1 2·349 2·349 2·348 2·348
2 4·422 4·366 4·246 3·996
3 7·770 7·020 6·064 5·307
4 8·756 8·043 6·674 5·868
5 11·153 8·748 8·131 7·493

3 1 3·619 3·616 3·612 3·604
2 6·011 5·816 5·323 4·676
3 8·989 7·840 6·899 6·483
4 10·148 8·691 7·372 6·770
5 11·996 9·764 9·149 8·309

4 1 4·724 4·713 4·693 4·652
2 7·545 6·986 6·014 5·354
3 10·051 8·682 8·128 7·516
4 11·311 9·321 8·256 8·071
5 12·614 11·013 9·964 9·225

5 1 5·758 5·731 5·676 5·574
2 8·970 7·785 6·699 6·206
3 10·949 9·814 9·048 8·383
4 12·300 10·086 9·603 9·511
5 13·307 12·037 10·821 10·207

6 1 6·753 6·699 6·593 6·454
2 10·215 8·451 7·495 7·159
3 11·784 10·909 9·910 9·239
4 13·080 11·108 10·990 10·868
5 14·325 12·875 11·734 11·234

Table 12—(continued overleaf )
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T 12—(continued)

H/D
ZXXXXXXXXXXXCXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

7 1 7·722 7·631 7·478 7·341
2 11·192 9·149 8·379 8·142
3 12·732 11·763 10·768 10·100
4 13·795 12·414 12·321 12·009
5 15·540 13·709 12·700 12·323

8 1 8·672 8·536 8·359 8·243
2 11·940 9·916 9·311 9·131
3 13·841 12·628 11·627 10·970
4 14·540 13·697 13·537 12·900
5 16·743 14·567 13·758 13·359

9 1 9·606 9·426 9·247 9·157
2 12·602 10·745 10·266 10·120
3 15·015 13·495 12·490 11·850
4 15·329 14·947 14·583 13·694
5 17·639 15·458 14·949 14·357

Note: 0a =axisymmetric, 0t =torsional.

shear stress. Other boundary conditions have to be satisfied approximately by imposing
orthogonalizing conditions on them.

Most of his results presented were plotted as frequency versus height-to-diameter ratios
with n=0·344. However, there were some data in the form of tables for convergence
studies, and some of them are selected for comparison with the present 3-D solutions.
Table 5 shows the convergence of dimensionless frequency (vRz(r/G)) for the lowest
antisymmetric mode with n=1 in the case of H/D=0·25. NR and NZ in the table
represent the number of terms Hutchinson used in radial and axial directions, respectively.
Even though the lowest frequency obtained was 3·154 (bold-faced), it may not be a
converged one. Thus it seems that Hutchinson’s series solutions converge somewhat
slowly.

Table 6, on the contrary, shows how well and rapidly the frequencies converge when
using the Ritz method. For the same parameters as in Table 5, it gives a lowest frequency
of 3·1457 which is exact to five digits. This frequency is attained with I=7 and J=2,
where I and J are the upper limits of the polynomial terms used in equations (3). By looking
at the frequencies with I=7, J=3 and I=9, J=2, one finds that it has converged at
that value.

Hutchinson [7] also used the series method to obtain 3-D solutions for annular plates.
Some of his results are seen in Table 4. It is seen there that most of his results agree well
with those from the present 3-D Ritz method. The disagreements are mainly due to a lack
of complete convergence in his values. However, there are other disagreements in Table
4 which are larger. These larger disagreements are: (1) For H/Do =0·2, (n, s)= (0, 4). The
value of 10·398 presented by Hutchinson is actually for the second antisymmetric torsion
mode (see Table 15 at the end of the present work). Table 4 is intended only to show
flexural (coupled with thickness-shear) deformation modes, which the Mindlin theory can
deal with. (2) For H/Do =0·2, (n, s)= (2, 1). The 3-D Hutchinson frequency of 6·901 is
clearly a typographical error. It should be 0·6901. (3) For H/Do =0·2, (n, s)= (3, 4). The
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T 13

3-D frequencies in vRz(r/G) for antisymmetric modes of the circular plates with n=0·499,
based upon the Rtiz method

H/D
ZXXXXXXXXXXXCXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

0a 1 1·754 2·235 2·551 2·767
2 4·908 5·337 5·272 4·978
3 7·872 7·110 6·583 6·406
4 9·635 9·174 9·085 8·201
5 11·688 10·551 9·311 8·702

0t 1 7·854 5·236 3·927 3·142
2 9·384 7·334 6·465 6·020
3 11·512 9·913 9·288 8·984
4 14·025 12·745 11·781 9·425
5 16·751 15·695 12·265 10·733

1 1 3·162 3·601 3·534 3·185
2 6·335 5·522 4·706 4·173
3 8·144 5·943 4·971 4·775
4 8·361 7·282 7·094 6·616
5 9·659 8·392 7·786 7·441

2 1 0·9200 1·222 1·440 1·599
2 4·515 4·790 4·499 4·140
3 7·502 6·490 5·887 5·354
4 9·008 6·863 6·146 6·093
5 9·148 8·796 8·423 7·739

3 1 1·892 2·347 2·631 2·818
2 5·798 5·855 5·437 5·088
3 8·493 7·495 7·081 6·572
4 9·853 8·031 7·383 7·286
5 10·268 10·152 9·490 8·636

4 1 2·940 3·475 3·776 3·959
2 7·013 6·831 6·357 6·027
3 9·394 8·566 8·297 7·661
4 10·868 9·260 8·547 8·396
5 11·634 11·363 10·405 9·506

5 1 4·015 4·583 4·877 5·044
2 8·159 7·760 7·276 6·970
3 10·284 9·684 9·439 8·534
4 11·978 10·470 9·644 9·490
5 12·891 12·426 11·277 10·506

6 1 5·095 5·667 5·941 6·086
2 9·239 8·673 8·203 7·918
3 11·209 10·818 10·372 9·305
4 13·126 11·628 10·766 10·537
5 14·122 13·373 12·222 11·565

Table 13—(continued overleaf )
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T 13—(continued)

H/D
ZXXXXXXXXXXXCXXXXXXXXXXXV

n s 0·2 0·3 0·4 0·5

7 1 6·169 6·727 6·975 7·096
2 10·262 9·586 9·138 8·871
3 12·182 11·947 11·167 10·079
4 14·282 12·705 11·881 11·505
5 15·324 14·264 13·255 12·572

8 1 7·232 7·764 7·984 8·083
2 11·239 10·503 10·080 9·826
3 13·199 13·059 11·926 10·891
4 15·431 13·676 12·952 12·408
5 16·499 15·178 14·258 13·586

9 1 8·283 8·783 8·974 9·052
2 12·187 11·428 11·029 10·784
3 14·245 14·137 12·695 11·745
4 16·568 14·560 13·974 13·279
5 17·648 16·158 15·179 14·607

Note: 0a =axisymmetric, 0t =torsional.

3-D Hutchinson value of 10·234 is actually for s=5 (see Table 15, where 10·2331 is listed
for this mode). (4) For H/Do =0·5, (n, s)= (0, 3), (0, 4) and (1, 4). The 3-D Hutchinson
frequencies of 7·503, 8·259 and 6·401, respectively, for these modes are much lower than
the converged Ritz values shown. Because 8·259 is close to the Ritz value of 8·258, it may
be that 7·503 is an extraneous root.

Gladwell and Vijay [15] used the finite element to obtain natural frequencies of annular
plates for modes up to n=2, using toroidal elements. In Table 7, frequencies from the
Ritz and finite element methods are compared for the annular plate having
(H/Do , Di /Do )= (0·2941, 0·1765) with n=0·3. From the table, it is seen that none of the
frequencies from the finite element method are lower than those from the Ritz method.
The finite element results are quite accurate since most frequencies have differences of less
than 1·0%. The largest difference is at most 1·39% for the mode (n, s)= (0, 5).

6. ACCURATE NATURAL FREQUENCIES OF CIRCULAR AND ANNULAR PLATES

Having had its convergence and accuracy established, the 3-D Rtiz method is now used
to obtain accurate frequencies for completely free circular and annular plates.

In Tables 8 and 9, non-dimensional frequencies vRz(r/G) are presented for circular
plates with H/D=0·2, 0·3, 0·4, 0·5 and n=0·3, for modes which are symmetric and
antisymmetric, respectively, to the midplane of the plate. There are 55 frequencies from
(n, s)= (0, 1) to (9, 5). The symmetric modes involve midplane stretching (except for the
torsional modes), whereas the antisymmetric modes include those which are predominantly
flexural (as well as thickness-shear modes). Rigid body mode frequencies, which are zero,
are excluded from the tables. Hutchinson [6] gave 10 plots of vRz(r/G) versus H/D, with
n=0–4, including the symmetric and antisymmetric modes. The range of H/D was
between 0 and 2, and the frequency parameter was displayed within 0–5. There are good
agreements between the results of Tables 8 and 9 and their plots except for two plots for
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T 14

3-D frequencies in vRoz(r/G) for symmetric modes of the annular plates with
H/Do =0·2 and n=0·3, based upon the Ritz method

Di /D0

ZXXXXXXXXCXXXXXXXXV
n s 0·1 0·5 0·9

0a 1 3·319 2·234 1·698
2 8·161 9·957 5·905
3 11·353 11·343 13·222
4 11·548 12·207 20·258
5 13·024 14·295 33·271

0t 1 5·142 6·814 15·708
2 8·457 12·856 31·416
3 11·739 15·708 31·482
4 15·044 17·122 35·183
5 15·708 19·046 44·476

1 1 2·748 2·806 2·393
2 6·031 7·372 5·953
3 6·879 9·868 13·119
4 10·233 11·386 15·906
5 10·453 12·077 20·279

2 1 2·210 0·9490 0·1382
2 4·149 4·177 3·771
3 6·839 8·630 6·097
4 8·493 9·721 12·897
5 10·460 11·516 16·416

3 1 3·594 2·249 0·3883
2 5·788 5·717 5·306
3 8·733 9·441 6·330
4 10·079 10·270 12·686
5 11·545 11·744 17·112

4 1 4·685 3·622 0·7372
2 7·349 7·209 6·634
3 9·988 9·626 6·875
4 11·260 11·310 12·574
5 11·926 12·130 17·919

5 1 5·700 4·969 1·177
2 8·834 8·575 7·029
3 10·932 10·028 8·375
4 11·987 11·924 12·629
5 12·617 12·671 18·801

6 1 6·679 6·237 1·699
2 10·166 9·806 7·483
3 11·674 10·630 9·732
4 12·571 12·467 12·952
5 13·687 13·349 19·732

Note: 0a =axisymmetric, 0t =torsional.
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T 15

3-D frequencies in vRoz(r/G) for antisymmetric modes of the annular platers
with H/Do =0·2 and n=0·3, based upon the Ritz method

Di /Do

ZXXXXXXXXCXXXXXXXXV
n s 0·1 0·5 0·9

0a 1 1·433 1·388 1·648
2 4·491 8·321 12·694
3 7·432 9·127 25·935
4 9·620 14·133 27·155
5 10·874 15·812 33·814

0t 1 7·854 7·854 7·854
2 9·388 10·398 23·562
3 11·542 15·065 32·447
4 14·124 20·602 39·270
5 16·971 23·562 39·323

1 1 2·717 1·943 1·688
2 5·643 8·039 8·084
3 7·619 8·534 12·726
4 8·238 8·945 23·512
5 9·325 10·876 26·046

2 1 0·8909 0·6907 0·2769
2 4·064 3·123 1·915
3 7·018 8·400 8·707
4 8·782 8·793 12·822
5 8·969 9·233 23·391

3 1 1·859 1·681 0·8203
2 5·351 4·450 2·382
3 8·144 8·808 9·598
4 9·719 8·986 12·982
5 10·064 10·233 23·254

4 1 2·890 2·771 1·479
2 6·561 5·805 3·036
3 9·091 9·238 10·651
4 10·715 9·587 13·202
5 11·264 11·357 23·145

5 1 3·951 3·881 2·163
2 7·709 7·141 3·832
3 9·980 9·857 11·797
4 11·814 10·394 13·483
5 12·482 12·520 23·091

6 1 5·022 4·984 2·852
2 8·795 8·421 4·728
3 10·881 10·641 12·988
4 12·961 11·372 13·827
5 13·689 13·686 23·111

Note: 0a =axisymmetric, 0t =torsional.
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n=4. These two plots are so unusual that no reasonable explanation can be made. Indeed,
he recently revised his paper to correct an error in the plots shown for the circumferential
order four [16]. The new plotted frequencies are found to be somewhat higher than those
in the tables, which indicates that his plots may be based upon inadequately converged
frequencies.

It is interesting to note that some of the torsional mode (n=0) frequencies in Table 8
(5·136, 8·417, 11·620) are independent of H/D. These are for modes which have cylindrical
nodal surfaces along through the thickness of the plate. On the other hand, frequencies
which are proper multiples of p (15·708, 10·472, 7·854, 6·283) are for modes which have
circular cross-sections as nodal planes.

To show the influence of Poisson’s ratio on the frequencies, Tables 10 to 13 are also
presented. Tables 10 and 11 display the frequencies of symmetric and antisymmetric modes
for the thickness ratios of Tables 8 and 9, except with n=0, and Tables 12 and 13 are
for n=0·499. (The upper limit of n=0·5 for an isotropic material cannot be achieved
exactly with the existing computer program due to a singularity.) It is seen that the
torsional frequencies do not depend upon Poisson’s ratio.

Finally, Tables 14 and 15 give the frequencies vRoz(r/G) for the annular plates with
(H/Do , Di /Do )= (0·2, 0·1), (0·2, 0·5) and (0·2, 0·9) with n=0·3. There are eight sets of
circumferential modes ranging from 0 to 6. It is noted that the lowest symmetric and
antisymmetric modes come from (n, s)= (2, 1), regardless of Di /Do . However, the
frequencies are quite different, i.e., 2·2099 (S) and 0·8909 (A) for DiDo =0·1, 0·9490 (S)
and 0·6907 (A) for DiDo =0·5, and 0·1382 (S) and 0·2769 (A) for Di /Do =0·9, where (S)
and (A) mean symmetric and antisymmetric frequencies, respectively. Thus, it is observed
that the fundamental mode shifts from antisymmetric (2, 1) to symmetric (2, 1) as the
annular plate becomes a ring type of geometry. This is because the out-of-plane, flexural
modes of plate-like configurations have lower frequencies than the in-plane, stretching
modes. This is seen for all circumferential modes (n). Note that Table 15 contains some
of the 3-D frequencies obtained by the Ritz method shown in Table 4.

7. CONCLUDING REMARKS

Extensive and accurate frequency data determined by the 3-D Ritz analysis have been
presented for circular and annular plates. The analysis uses the 3-D equations of the theory
of elasticity in their general forms for isotropic materials. They are only limited to small
strains. No other constraints are placed upon the displacements. This is in stark contrast
with the 2-D plate theories, which make very limiting assumptions about the displacement
variations through the plate thickness.

Thorough convergence studies of the type shown in Tables 1 and 2 have been made [5]
which indicate that the benchmark frequency values given in Tables 8–15 have converged
to at least four significant figures. Because the admissible functions given by equations (3)
are mathematically complete, they are capable of representing any deformation of the
plate. That is, there are no constraints on the displacements. Thus, as sufficient polynomial
terms are taken in equations (3), the frequencies will converge to the exact values, and the
frequencies in Tables 8–15 may be considered as being exact to four digits.

The high accuracy is obtained with reasonable computational time because, although
the analysis is 3-D, one variable (u) is separated out early in equations (2), due to the
required periodicity of the displacements in u (i.e., f(u+2p)= f(u)). This reduces the
problem to a sequence of 2-D mathematical problems, one for each circumferential wave
number, n. The 2-D problems require much less computer time and capacity than would
a 3-D problem.
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The extensive data includes frequencies for all vibration modes which are symmetric with
respect to the midplane (z=0) of the plate, as well as those which are antisymmetric. The
symmetric modes involve midplane stretching (u$ 0, v$ 0), except for the case n=0,
which is torsional. The antisymmetric modes are combinations of predominantly bending
and thickness-shear deformations (except for the torsional modes). For the thinner plates
the antisymmetric modes are typically the most important. For example, Tables 8 and 9
show that for H/D=0·2, the first two frequencies, and seven of the first ten, are associated
with antisymmetric modes; but, for H/D=0·5, only half of the first ten frequencies are
for antisymmetric modes.

The frequencies given in Tables 8–15 serve as valuable benchmark results against which
results from 2-D thick plate theories or approximate methods (for example, finite elements,
finite differences) may be compared in order to establish their accuracies. Besides the 2-D
Mindlin theory used here for comparison (Tables 3 and 4), there are higher order 2-D plate
theories proposed by numerous authors. Their governing equations are much more
complicated than those of the Mindlin theory. One wonders how accurate their frequencies
would be in representing a 3-D problem.

The 3-D method of analysis has been presented in a form which admits fixed boundaries
as well as free ones, and it could be applied straightforwardly to such problems. Thus, one
could obtain accurate frequencies for ‘‘clamped’’ circular plates, or for annular plates
having one or both circular boundaries ‘‘clampled’’. The ‘‘clamping’’ simply requires all
three displacement components at a boundary to be zero. Nothing is said about their
slopes. One would expect the convergence of such solutions to be slower than that for a
free boundary because of the stress singularities which arise at the top and bottom corners
(z=21

2) of the fixed boundaries.
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